An Overview of DNS Security Measurements

Chaoyi Lu Nov 7, 2023

DNS INFRASTRUCTURE

Why measure DNS security?

DNS is so fundamental.

But unfortunately, so vulnerable.

DNS Security Measurement Topics

Measuring security issues

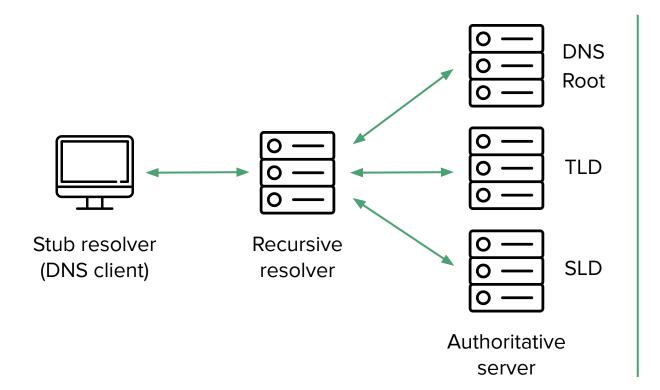
Domain abuse

Packet interception

Rogue servers

Name collision

Measuring operational status

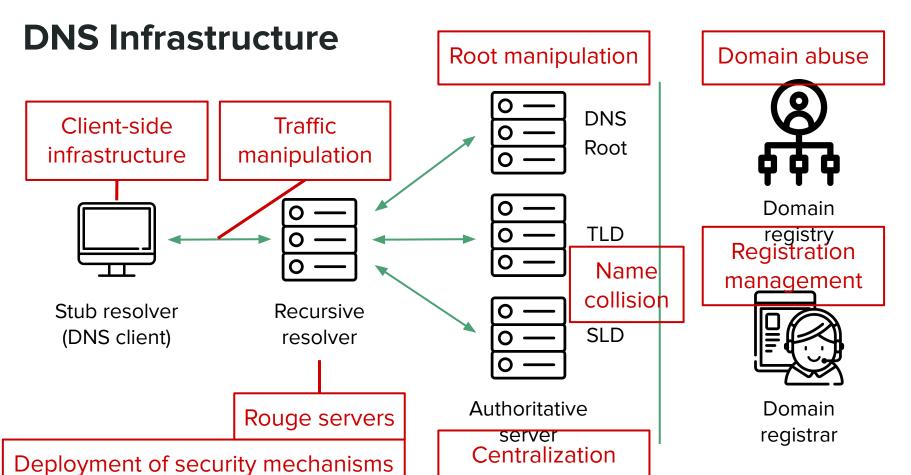

Client-side infrastructure

Encrypted DNS

DNSSEC

EDNS(0) Extensions

DNS Infrastructure



Domain registry



Domain registrar

DNS SECURITY MEASUREMENTS

DNS Infrastructure

Domain registry

Domain registrar

On Measuring the Client-Side DNS Infrastructure

Kyle Schomp[†], Tom Callahan[†], Michael Rabinovich[†], Mark Allman[‡]

[†]Case Western Reserve University, Cleveland, OH, USA

{kyle.schomp,tom.callahan,michael.rabinovich}@case.edu

[‡]International Computer Science Institute, Berkeley, CA, USA

mallman@icir.org

The client-side DNS infrastructure **DNS** Root TLD Stub resolver Recursive **SLD** (DNS client) resolver **Authoritative**

server

The client-side DNS infrastructure

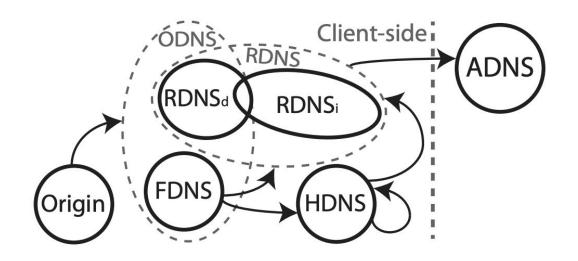
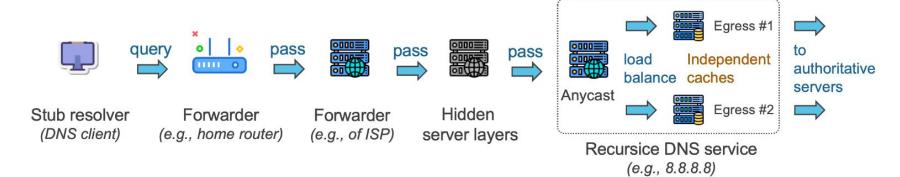
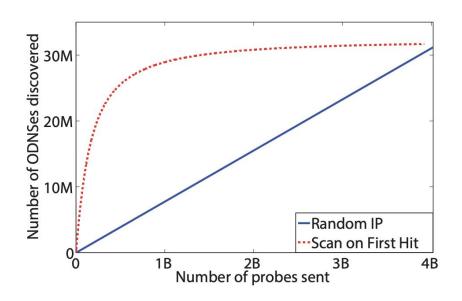
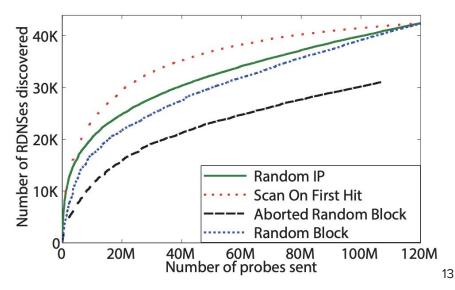



Figure 1: Structure of the client-side DNS infrastructure.


The client-side DNS infrastructure


* A typical DNS resolution path now looks like this

Count of ODNS & RDNS.

95% of ODNS are actually FDNS.

TTL & caching behaviors.

Behavior	Percentage of Measurements	Expected (sec)	% <	% >	Mode Lie	
	<u> </u>				Value	% of All Lies
Honest	19%	1	0%	11%	10000	35%
Lie on Initial	38%	10-120	≤ 1%	$\leq 8\%$	10000	$\geq 37\%$
Lie on Subsequent	9%	1000	1%	3%	10000	62%
Constant TTL	7%	3600	2%	2%	10000	51%
	1%	10000	5%	0%	3600	40%
Increment TTL	1 %	10800	8%	0%	3600	27%
		86400	16%	0%	21600	36%
		100000	22%	0%	21600	27%
Table 3: Aggregate TTL Behavior		604800	22%	0%	21600	26%
Table 3. Agg	1000000	64%	0%	604800	67%	

Implementations are not always following the specifications.

Table 4: Aggregate TTL Deviations

A. Operational Statistics of the DNS

DNS Observatory: The Big Picture of the DNS

Pawel Foremski Farsight Security, Inc. / IITiS PAN pjf@fsi.io Oliver Gasser Technical University of Munich gasser@net.in.tum.de Giovane C. M. Moura SIDN Labs / TU Delft giovane.moura@sidn.nl

A. Operational Statistics of the DNS

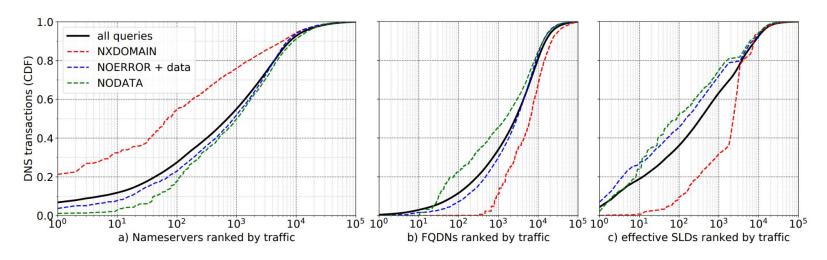
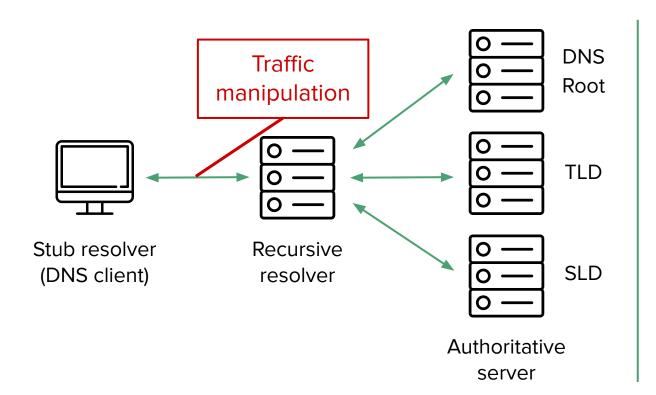



Figure 2: Traffic distributions for various Top-100K DNS objects, ranked by traffic. Note that the x-axis is log-scaled for improved readability.

A. Operational Statistics of the DNS

	QTYPE	global	data	nodata	nxd	err
1	A	64%	67%	0.6%	22%	11%
2	AAAA	22%	57%	25%	5.9%	11%
3	PTR	6.4%	45%	0.2%	29%	26%
4	NS	1.4%	9.4%	1.4%	86%	3.2%
5	TXT	1.4%	65%	4.1%	22%	8.1%
6	MX	1.2%	60%	3.3%	2.9%	34%

DNS Infrastructure

Domain registry

Domain registrar

B. Packet Interception - Error Monetization

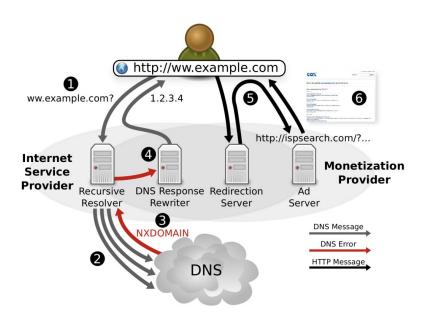
Redirecting DNS for Ads and Profit

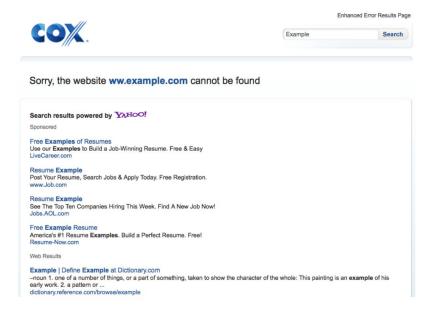
Nicholas Weaver *ICSI*

Christian Kreibich *ICSI*

ICSI & UC Berkeley

nweaver@icir.org


christian@icir.org


vern@cs.berkeley.edu

Vern Paxson

B. Packet Interception - Error Monetization

Threat model

B. Packet Interception - Error Monetization

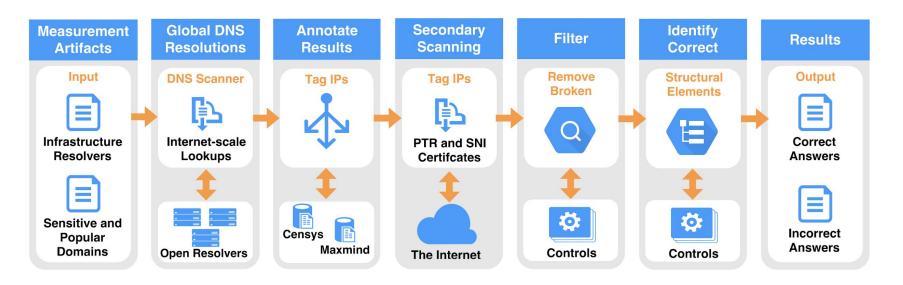
ISP	# Sessions	Country	MONETIZATION PROVIDER	REWRITING RULE	— USER OPT-0 MECHANISM	Out — % rate
Alice DSL	3,761	DE	X (AOL?)	WWW	Account Setting	25
Brazil Telecom	569	BR	×	WWW	?	2
Charter	2,241	US	Paxfire → Xerocole	WWW	Account Setting	34
Comcast	17,362	US	FAST	WWW	Account Setting	27
Cox	2,633	US	Barefruit	all	Account Setting	18
Deutsche Telekom	12,671	DE	×	all	Account Setting	30
Optimum Online	1,210	US	Infospace	WWW	Account Setting	15
Oi	657	BR	Barefruit	all	Cookie	25
Qwest	1,542	US	Barefruit	all	Account Setting	33
Rogers Cablesystems	1,197	CA	Paxfire	all	Cookie	4
Telecom Italia	1,429	IT	X	all	?	33
Time Warner	7,287	US	$Xerocole \rightarrow FAST$	WWW	Account Setting	20
UPC	964	NL	Infospace → Nominum	WWW	?	5
Verizon	4,751	US	Paxfire	WWW	Resolver Change	9
Virgin Media	1,890	UK	Nominum	WWW	?	28

Table 2: The 15 DNS-monetizing ISPs most prevalent in our Netalyzr dataset, their monetization providers, and monetization details. "→" indicates a provider switch, "✗" ISP-internal realization of the monetization service.

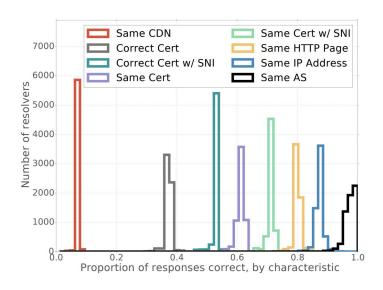
1-3 USD per customer of extra profit -> ISPs are willing to do this!

B. Packet Interception - Censorship

Global Measurement of DNS Manipulation


```
Paul Pearce<sup>⋄</sup> Ben Jones<sup>†</sup> Frank Li<sup>⋄</sup> Roya Ensafi<sup>†</sup>
Nick Feamster<sup>†</sup> Nick Weaver<sup>‡</sup> Vern Paxson<sup>⋄</sup>
```

*University of California, Berkeley †Princeton University ‡ International Computer Science Institute


{pearce, frankli, vern}@cs.berkeley.edu {bj6, rensafi, feamster}@cs.princeton.edu nweaver@icsi.berkeley.edu

B. Packet Interception - Censorship

Automatic detection of DNS manipulation

B. Packet Interception - Censorship

Figure 3: The ability of each correctness metric to classify responses as correct. Table is ordered (top to bottom, left to right) by the lines on the graph (left to right).

Several classification metrics

Rank	Domain Name	Category	# Cn	# Res
1	*pokerstars.com	Gambling	19	251
2	betway.com	Gambling	19	234
3	pornhub.com	Pornography	19	222
4	youporn.com	Pornography	19	192
5	xvideos.com	Pornography	19	174
6	thepiratebay.org	P2P sharing	18	236
7	thepiratebay.se	P2P sharing	18	217
8	xhamster.com	Pornography	18	200
9	*partypoker.com	Gambling	17	226
10	beeg.com	Pornography	17	183
80	torproject.org	Anon. & cen.	12	159
181	twitter.com	Twitter	9	160
250	*youtube.com	Google	8	165
495	*citizenlab.org	Freedom expr.	4	148
606	www.google.com	Google	3	56
1086	google.com	Google	1	5

Commonly manipulated domains

Who Is Answering My Queries: Understanding and Characterizing Interception of the DNS Resolution Path

Baojun Liu*, Chaoyi Lu*, Haixin Duan*, Ying Liu*⊠, Zhou Li[†], Shuang Hao[‡] and Min Yang[§]

* Tsinghua University, † IEEE member, ‡ University of Texas at Dallas, § Fudan University

Threat model

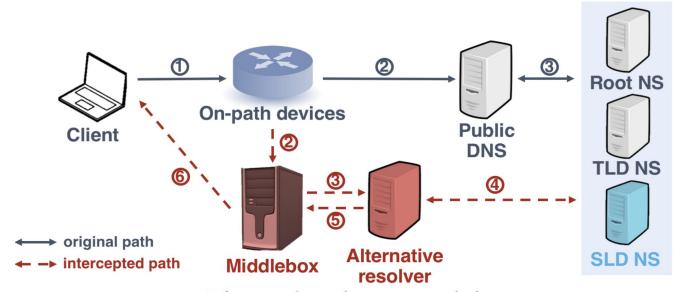
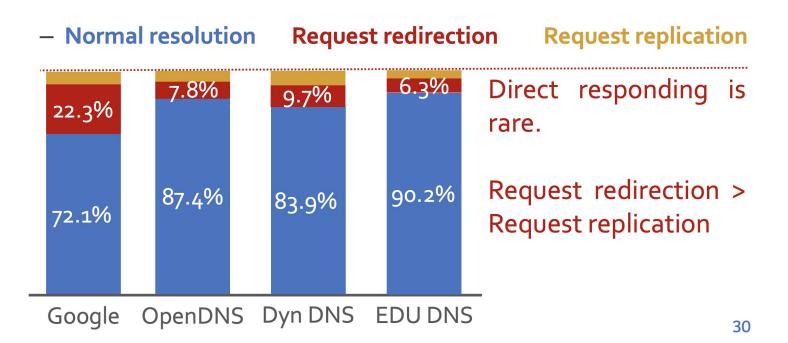
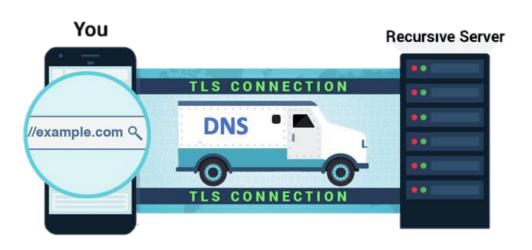



Figure 2: *Threat model*

- Alternative resolvers' security
 - An analysis on 205 open alternative resolvers

Only 43% resolvers support DNSSEC


ALL BIND versions should be deprecated before 2009

B. Packet Interception - Recommendations

Deploy and use secure versions of DNS.

Encrypted DNS

A Longitudinal, End-to-End View of the DNSSEC Ecosystem

Taejoong Chung

Roland van Rijswijk-Deij

Northeastern University

University of Twente and SURFnet

Balakrishnan Chandrasekaran

David Choffnes

Dave Levin

TU Berlin

Northeastern University

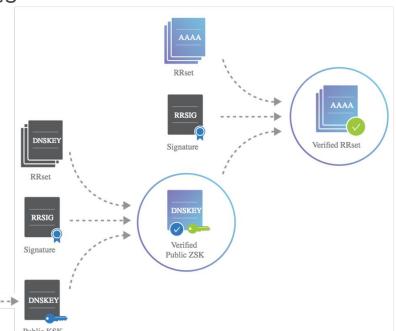
University of Maryland

Bruce M. Maggs

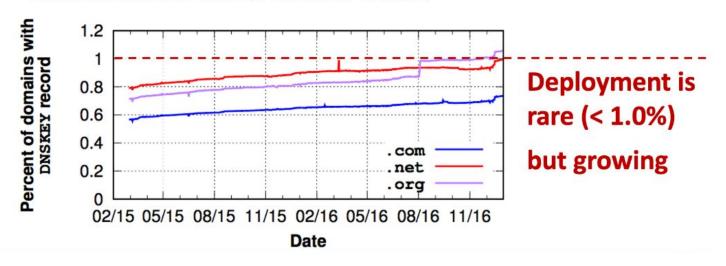
Alan Mislove

Duke University and Akamai Technologies

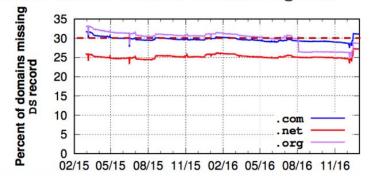
Northeastern University

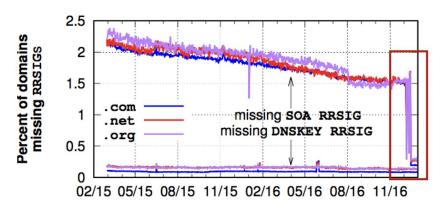

Christo Wilson

Northeastern University

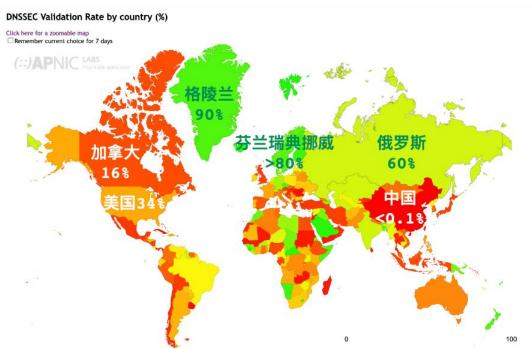

Gist: attach digital signatures to responses

Domain owners **sign** domains


Resolver **validate** responses

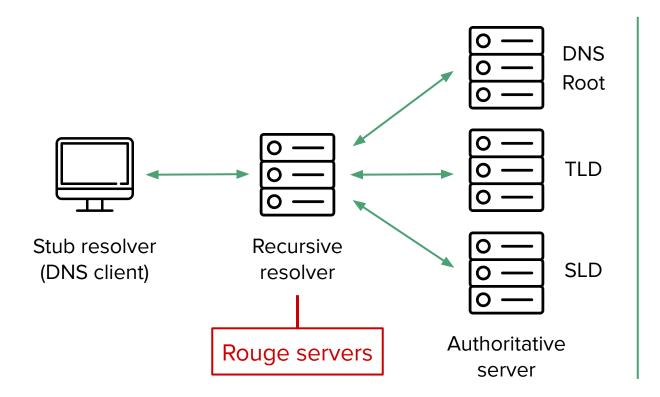

- DNSSEC prevalence
 - Domain names with a DNSKEY record

- Missing DS records
 - · Broken chain or trust
 - Domain owners need to contact registrar



- Missing RRSIG records
 - No signatures to validate

30% domains have misconfigurations!


Validation rate of recursive resolvers by country

在多数国家, 服务器对DNSSEC签名的验证 比例仍然较低

推动DNSSEC的部署 需要域名所有者、域名 服务器的共同参与

DNS Infrastructure

Domain registry

Domain registrar

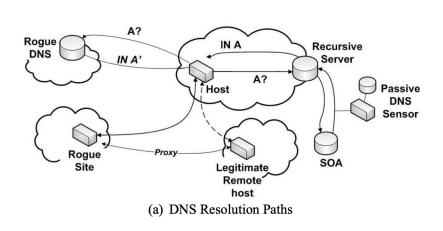
C. Rogue Servers - Resolver Altering

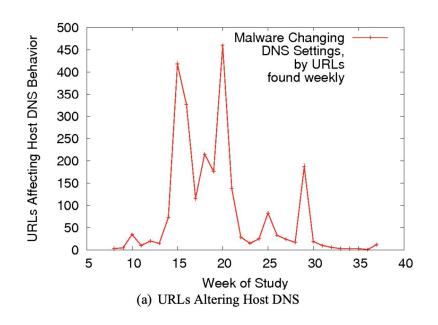
Corrupted DNS Resolution Paths: The Rise of a Malicious Resolution Authority

```
David Dagon<sup>1</sup> Niels Provos<sup>2</sup> Christopher P. Lee<sup>3</sup> Wenke Lee<sup>1</sup>

College of Computing, Georgia Institute of Technology,

{dagon, wenke}@cc.gatech.edu
```


²Google Inc.


niels@google.com

³College of Engineering, Georgia Institute of Technology,

chrislee@gatech.edu

C. Rogue Servers - Resolver Altering

C. Rogue Servers - Open Resolvers

Going Wild: Large-Scale Classification of Open DNS Resolvers

Marc Kührer Ruhr-University Bochum marc.kuehrer@rub.de Thomas Hupperich
Ruhr-University Bochum
thomas.hupperich@rub.de

Jonas Bushart Saarland University s9jobush@stud.unisaarland.de

Christian Rossow Saarland University crossow@mmci.unisaarland.de Thorsten Holz
Ruhr-University Bochum
thorsten.holz@rub.de

C. Rogue Servers - Open Resolvers

Resolver scan & classification.

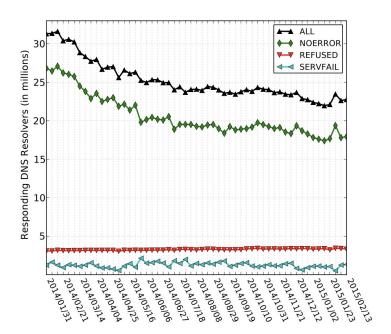
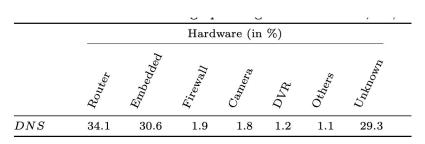
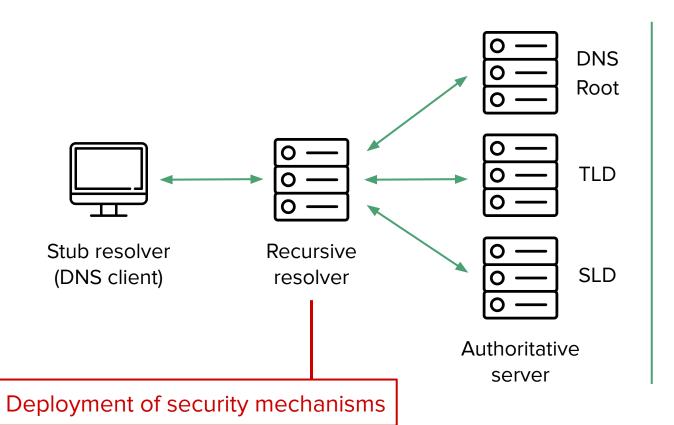



Figure 1: DNS resolvers identified in our weekly scans

Software	Resolvers	Released	Deprecated	CVE
BIND 9.8.2	19.8%	Apr 2012	May 2012	IP Bypass, DoS
				Mem. Corr./Leak.
BIND 9.3.6	8.9%	Nov 2008	Jan 2009	DoS
BIND 9.7.3	5.7%	Feb 2012	Nov 2012	Mem. Overfl., DoS
BIND 9.9.5	5.2%	Feb 2014	Sep 2014	DoS
Unbound 1.4.2	2 4.8 %	Mar 2014	Nov 2014	Mem. Overfl., DoS
Dnsmasq 2.40	4.6%	Aug 2007	Feb 2008	RCE, DoS
BIND 9.8.4	3.9%	Oct 2012	May 2013	IP Bypass, DoS
				Mem. Overfl.
PowerDNS 3.5.	3.2%	Sep 2013	Jun 2014	DoS
Dnsmasq 2.52	2.9%	Jan 2010	Jun 2010	DoS
MS DNS 6.1.76		Jun 2011	Aug 2011	DoS

Deprecated software versions are still in use.

Routers & Embedded devices.


C. Rogue Servers - Open Resolvers

Analysis of bogus resolutions.

Table 5: Clustering and labeling results of the HTTP payload data for unexpected ($domain \circ ip \circ resolver$) tuples

	Average number of resolvers in $\%$ / (Highest number of resolvers seen for a domain in the particular dataset in $\%$)						ر و							
Label	$A_{d_{\mathcal{S}}}$	Adul_t	Aleka	$A_{ntiviru_s}$	B_{anking}	D_{ating}	Filesharing	$G_{anbling}$	Ground Ir.	Malware	$M_{isc.}$	th	A.	Tracking
Blocking	0.3	2.2	0.7	0.3	0.4	6.2	3.1	3.7	0.2	9.0	0.9	0.9	1.9	0.6
	(0.5)	(3.3)	(2.5)	(0.4)	(1.0)	(10.9)	(6.5)	(6.4)	(0.2)	(21.4)	(4.8)	(1.9)	(16.2)	(2.2)
Censorship	10.8	88.6	19.1	0.1	0.1	31.8	36.5	75.9	0.1	0.8	8.4	0.1	3.2	0.1
	(96.2)	(91.3)	(97.1)	(0.1)	(0.1)	(87.3)	(91.3)	(90.4)	(0.1)	(8.1)	(92.5)	(0.2)	(37.1)	(0.1)
HTTP Error	48.1	5.2	45.8	57.0	55.4	34.8	32.6	15.8	55.0	29.8	50.8	57.0	24.7	57.0
	(70.4)	(6.9)	(63.9)	(75.0)	(63.5)	(50.1)	(52.0)	(49.8)	(56.0)	(53.7)	(71.1)	(65.9)	(55.8)	(69.4)
Login	12.2	1.2	12.8	15.5	16.8	10.2	9.5	1.9	16.1	9.5	14.3	17.0	2.8	12.5
	(16.8)	(1.6)	(19.1)	(17.4)	(19.6)	(15.4)	(15.1)	(3.9)	(17.2)	(17.2)	(18.5)	(19.8)	(9.4)	(16.2)
Misc.	11.5	0.9	5.3	5.9	5.0	3.2	4.9	0.7	5.1	3.3	5.1	5.0	8.5	11.2
	(56.4)	(1.6)	(21.6)	(16.2)	(10.5)	(4.8)	(12.5)	(1.4)	(5.8)	(5.6)	(9.7)	(5.8)	(19.7)	(5.5)
Parking	17.1	1.8	16.1	21.2	22.2	13.8	13.4	2.0	23.4	26.2	20.5	20.0	23.2	18.6
3	(23.9)	(2.4)	(24.0)	(25.0)	(24.3)	(21.5)	(22.4)	(2.4)	(23.9)	(92.1)	(83.6)	(23.4)	(42.4)	(24.0)
Search	0.0	0.1	0.2	0.0	0.1	0.0	0.0	0.0	0.1	21.4	0.0	` 0.Ó	35.7	0.0
	(0.1)	(0.1)	(2.7)	(0.1)	(0.1)	(0.1)	(0.0)	(0.0)	(0.6)	(69.3)	(0.5)	(0.1)	(65.1)	(0.0)

DNS Infrastructure

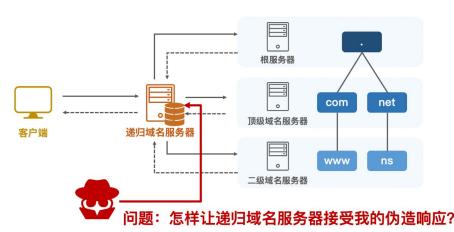
Domain registry

Domain registrar

Fourteen Years in the Life: A Root Server's Perspective on DNS Resolver Security

Alden Hilton*
Sandia National Laboratories
alden.hilton@sandia.gov

Casey Deccio
Brigham Young University
casey@byu.edu


Jacob Davis
Sandia National Laboratories
jacdavi@sandia.gov

A. Src port & TXID randomization - defence for cache poisoning

缓存污染攻击

攻击模型: 旁路注入 (off-path injection)

攻击者**并不位于域名解析链路上**,无法直接嗅探和修改报文 攻击者想要**注入一个伪造的响应**,使得递归域名服务器接受并写入缓存

A. Src port & TXID randomization - defence for cache poisoning

缓存污染攻击

什么样的响应会被递归域名服务器接收?

递归域名服务器会做什么检查?

oits	0	4	8 :	61	7181	.9 2	1	25	28	3
	Version	IHL Type of Service					Total Length			
	Identification						Fragme	nt Of	fse	et
	Time T	o Live	Protocol			Не	ader Ch	necks	um	
	Source Address									
	Destination Address									
		Source	Port	Destination Port						
		Len	gth	Checksum						
		tion ID	Q R	Opo	code	Flags	Z	Т	RCODE	
	QDCOUNT						ANCOU	JNT		
	NSCOUNT						ARCOU	JNT		
	QUESTION SECTION									

A. Src port & TXID randomization - defence for cache poisoning

缓存污染攻击

攻击者如何伪造符合上述条件的响应?

条件	备注	是否可控/可预知
	响应源地址 = 权威服务器地址	是(通过查询实现)
IP地址匹配	响应目的地址 = 递归域名服务器	是
端口匹配	响应源端口 = 53(DNS默认服务端口)	是
	响应目的端口 = 请求源端口	否
TXID匹配	响应TXID = 请求TXID	否
问题区域匹配	响应问题区域 = 请求问题区域	是(为什么?)
伪造响应先到达	伪造响应先于真实响应到达	是

A. Src port & TXID randomization - defence for cache poisoning

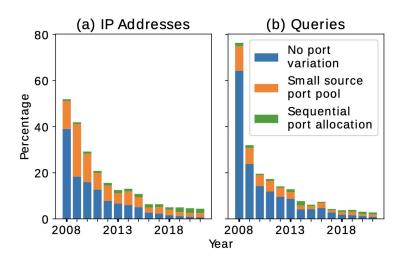


Figure 1: (a) The percentage of resolvers with poor SPR. (b) The percentage of queries from resolvers with poor SPR.

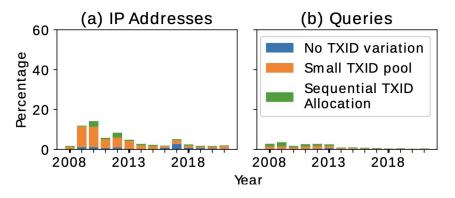
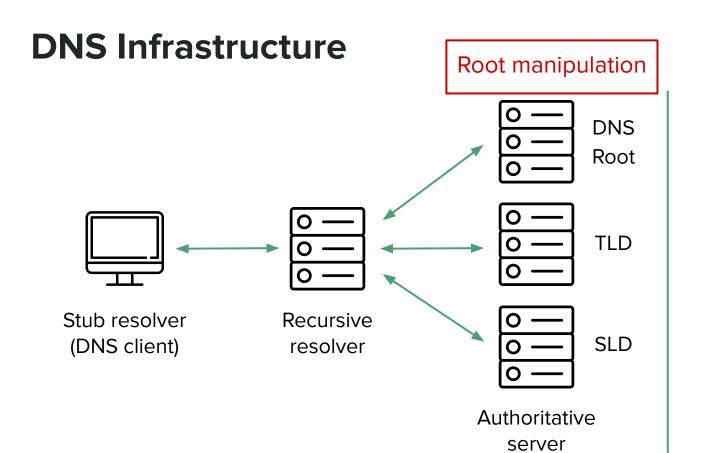



Figure 2: (a) The percentage of resolvers with poor TXID randomization. (b) The percentage of queries from resolvers with poor TXID randomization

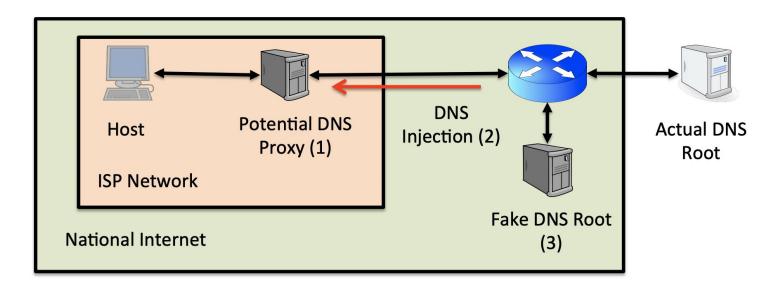
B. Interactions between different security mechanisms

TXID	SPR	DNSSEC	0x20	Cookies	QMIN	IP Addr	IP Addresses		Ses	Queries	
						#	%	#	%	#	%
√	✓	×	×	×	×	2,189,133	59.0%	40,173	79.8%	1,268	19.9%
√	√	✓	×	×	×	503,799	13.6%	26,486	52.6%	15,449	55.8%
√	✓	×	×	✓	×	315,015	8.5%	13,168	26.2%	857	1.9%
√	✓	×	×	×	√	189,895	5.1%	7,956	15.8%	2,242	3.1%
√	✓	✓	×	×	✓	157,278	4.2%	9,782	19.4%	7,895	8.9%
√	✓	√	×	√	×	133,099	3.6%	12,398	24.6%	5,296	5.1%
√	×	×	×	×	×	114,592	3.1%	6,931	13.8%	2,527	2.1%
×	×	×	×	×	×	47,069	1.3%	3,202	6.4%	383	0.1%
×	✓	×	×	×	×	24,192	0.7%	2,191	4.4%	849	0.1%
other					38,716	1.0%	5,471	10.9%	11,042	3.1%	

Domain registry

Domain registrar

Detecting DNS Root Manipulation

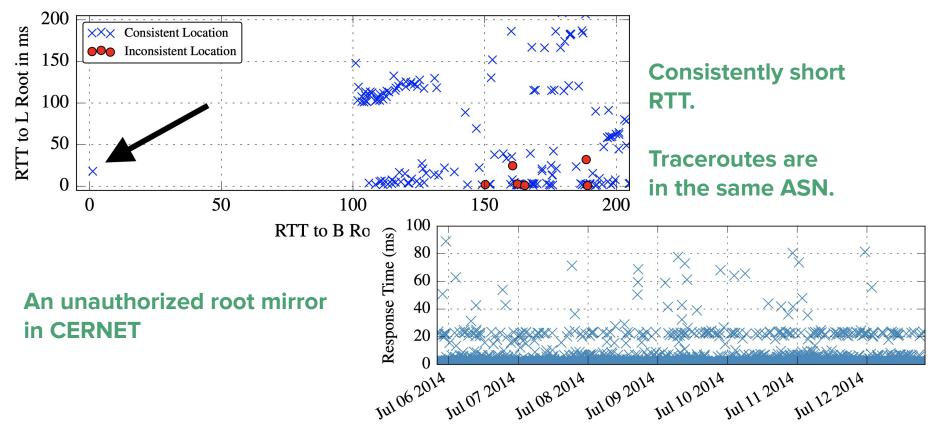

Ben Jones¹, Nick Feamster¹, Vern Paxson^{2,3}, Nicholas Weaver², and Mark Allman²

¹ Princeton University

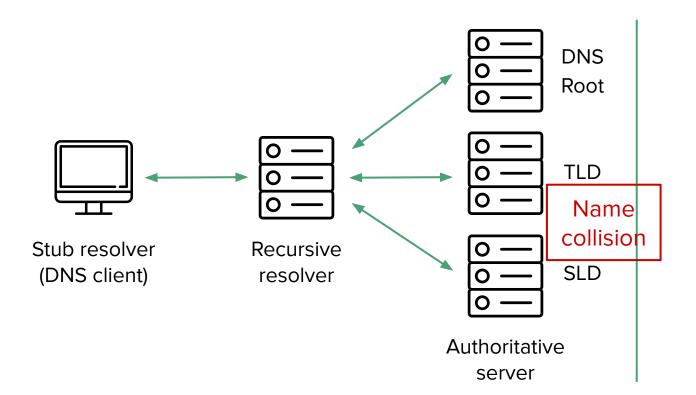
² International Computer Science Institute

³ University of California, Berkeley

Threat model



Vantage point & dataset collection


DNS, ping & traceroute requests to the Unicast-B Root

Measurements	Dates	Manipulation					
RIPE Atlas							
ping	July 6–13, 2014	root mirrors					
HOSTNAME.BIND	July 22, 2014	proxies & root mirrors					
traceroutes	July 6, 2014	proxies & root mirrors					
BGP							
RIPE RIS	July 6–13, 2014	root mirrors					
RouteViews	July 7, 2014	root mirrors					

Table 1: Data sources used to investigate possible manipulation.

DNS Infrastructure

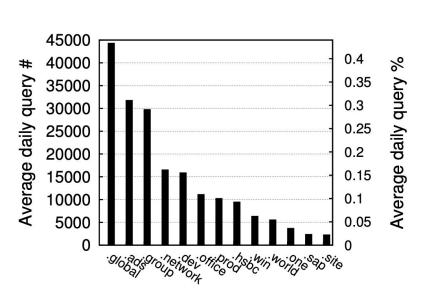
Domain registry

Domain registrar

MitM Attack by Name Collision: Cause Analysis and Vulnerability Assessment in the New gTLD Era

Qi Alfred Chen, Eric Osterweil[†], Matthew Thomas[†], Z. Morley Mao University of Michigan, [†]Verisign Labs alfchen@umich.edu, {eosterweil, mthomas}@verisign.com, zmao@umich.edu

Threat model


company.ntld

Authoritative DNS wpad.company.ntld wpad.company.ntld server operated by Vulnerable AS Vulnerable AS attacker Attacker server After ntld delegation Phishing, pwd No such name stealing, privacy and company.ntld DNS root leakage, etc. registered by attacker server Get wpad.dat Attacker proxy config. Web traffic Victim device hardcoded Victim device hardcoded Web w/ vulnerable domain w/ vulnerable domain Attacker web server

company.ntld

Name collision caused by new gTLD

& MitM proxy

Attack surface size

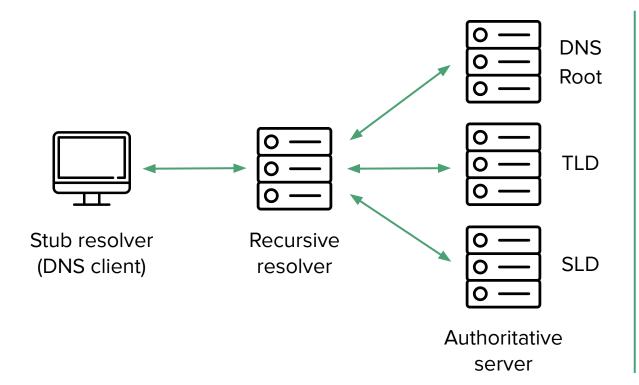
Popular delegated new gTLDs in NXD WPAD queries

New gTLDs ranked by attack surface size

Potential attack surface is opening.

Client-side Name Collision Vulnerability in the New gTLD Era: A Systematic Study

Qi Alfred Chen, Matthew Thomas[†], Eric Osterweil[†], Yulong Cao, Jie You, Z. Morley Mao University of Michigan, †Verisign Labs alfchen@umich.edu,{mthomas,eosterweil}@verisign.com,{yulongc,jieyou,zmao}@umich.edu


Other vulnerable services except for WPAD

Exposed service	Potential security implications
Traine -	Implications
wpad① (N), isatap② (N),	MitM attack
proxy② (N)	
ntp3	Time shifting attack
vlmcs② (N)	DoS
ns*① (N), alt*① (N),	Server spoofing,
lb① (N), db① (N), dns-sd①,	service info. leakage
dr① (N), tracker② (N),	
dns-llq⑤, dns-update⑤	
www*① (N), api① (N),	Web-based phishing
static ^① (N), cf ^① (N),	attack, malicious script
share① (N), http②, https③	execution
	name wpad① (N), isatap② (N), proxy② (N) ntp③ vlmcs② (N) ns*① (N), alt*① (N), lb① (N), db① (N), dns-sd①, dr① (N), tracker② (N), dns-llq⑤, dns-update⑤ www*① (N), api① (N), static① (N), cf① (N),

E. Name Collision - Recommendations

Level	Remediation strategy	Effectiveness	Deploy #
New	Scrutinize the registration of		
gTLD	the union set of highly-	97.4%	494
registry	vulnerable domains		
	Filter the intersection set of	36.4%	
Victim	highly-vulnerable domains		
AS	Filter AS-specific	97.4%	11305
	highly-vulnerable domains		
	Filter responses w/ public IP	Not evaluated	
	Disable WPAD service (if not	Not evaluated	
End	used in internal networks)		> 6.6
user	Update OS, no hardcoding	~100.0%	million
	Filter device-level leaks	(in theory)	

DNS Infrastructure

Domain abuse

Domain registry

Domain registrar

F. Domain Abuse

F. Domain Abuse

What can you do with youtube.com?

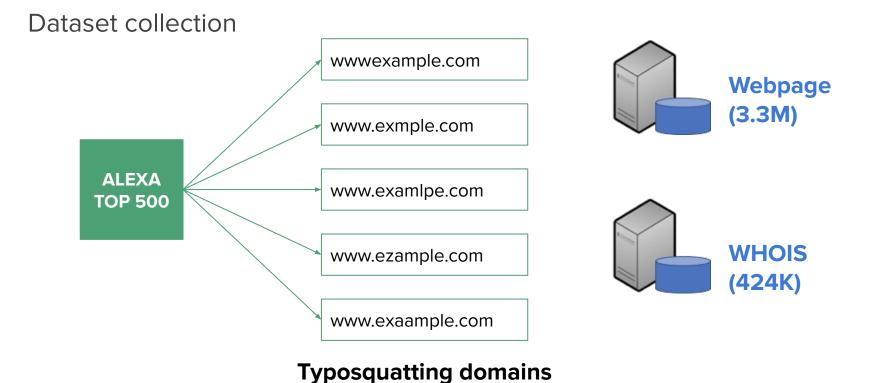
Туре	Example	Paper
Typosquatting	youtu eb .com	[NDSS '15]
Bitsquatting	youtub <mark>u</mark> .com	[WWW '13]
Combosquatting	youtube- videos .com	[CCS '17]
Levelsquatting	youtube.com. youtube-service.com	[SecureComm '19]
Homograph attack	y <mark>0</mark> utube.com	[USENIX '06] [DSN '18]

F. Domain Abuse - Typosquatting

youtube.com -> youtueb.com

Seven Months' Worth of Mistakes: A Longitudinal Study of Typosquatting Abuse

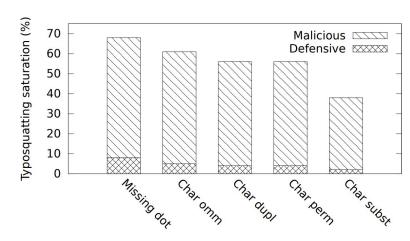
```
Pieter Agten*, Wouter Joosen*, Frank Piessens* and Nick Nikiforakis†

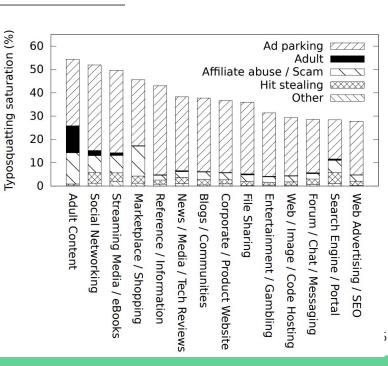

* iMinds-DistriNet, KU Leuven,

{firstname}.{lastname}@cs.kuleuven.be

† Department of Computer Science, Stony Brook University,

nick@cs.stonybrook.edu
```


F. Domain Abuse - Typosquatting

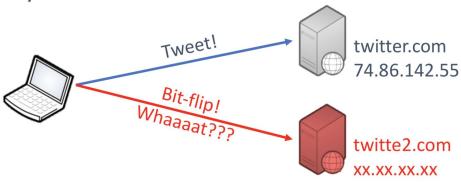


F. Domain Abuse - Typosquatting

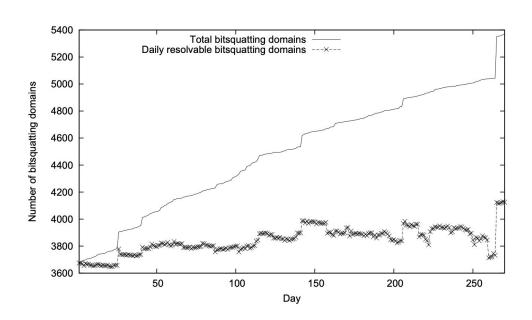
Malicious contents are hosting on the domains.

Ad parking	Pages that have no content other than showing advertisements
Adult content	Pages showing adult/pornographic content
Affiliate abuse	Pages taking advantage of an affiliate program offered by ano
For sale	Pages that have no content other than being advertised as for
Hit stealing	Pages redirecting to a legitimate domain without abusing an a
Scam	Pages persuading the user to enter personal information or to

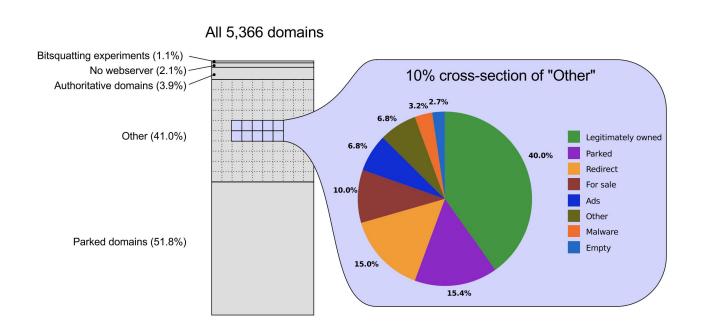
youtube.com -> youtubu.com


Bitsquatting: Exploiting Bit-flips for Fun, or Profit?

Nick Nikiforakis, Steven Van Acker, Wannes Meert[†], Lieven Desmet, Frank Piessens, Wouter Joosen


iMinds-DistriNet / †DTAI, KU Leuven, 3001 Leuven, Belgium firstname.lastname@cs.kuleuven.be

youtube.com -> youtubu.com


- Bitsquatting
 - Caused by random bit-flip errors.
 - 1 of every $10^7 10^8$ DNS resolutions suffers from an error.

Dataset collection paypal.com xaypal.com **ALEXA** Webpage taypal.com **TOP 500** raypal.com qaypal.com **Bitsquatting domains**

Growing number of bitsquatting domains (5.3K in total)

F. Domain Abuse - Combosquatting

youtube.com -> youtube-videos.com

Session C2: World Wide Web of Wickedness

CCS'17, October 30-November 3, 2017, Dallas, TX, USA

Hiding in Plain Sight: A Longitudinal Study of Combosquatting Abuse

Najmeh Miramirkhani

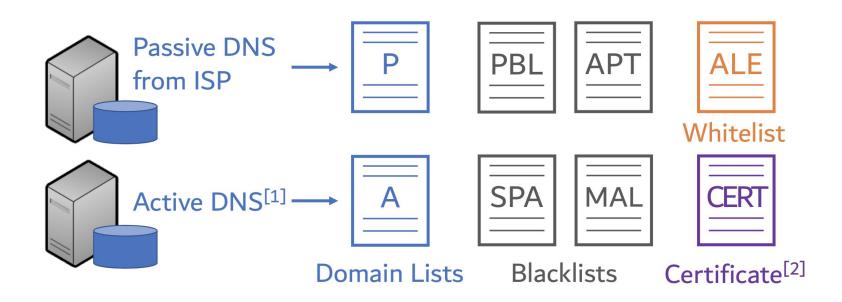
Panagiotis Kintis Georgia Institute of Technology kintis@gatech.edu

Yizheng Chen

Georgia Institute of Technology
vzchen@gatech.edu

Roza Romero-Gómez
Georgia Institute of Technology
rgomez30@gatech.edu

Stony Brook University Georgia Institute of Technology nmiramirkhani@cs.stonybrook. edu Georgia Institute of Technology chazlever@gatech.edu


Nikolaos Pitropakis London South Bank University pitropan@lsbu.ac.uk

Charles Lever

Nick Nikiforakis Stony Brook University nick@cs.stonybrook.edu Manos Antonakakis Georgia Institute of Technology manos@gatech.edu

F. Domain Abuse - Combosquatting

Dataset collection

F. Domain Abuse - Combosquatting

Combosquatting is way more popular.

2 orders of magnitude more domains.

The domains are already being used in malicious businesses.

Trademark	#Phishing	Example
Facebook	56	facebook123[.]cf
icloud	48	icloudaccountuser[.]com
Amazon	7	secure5-amazon[.]com
Google	8	drivegoogle[.]ga
PayPal	8	paypal-updates[.]ml
Instagram	7	wvwinstagram[.]com
Baidu	4	baidullhk[.]com

F. Domain Abuse - Levelsquatting

youtube.com -> youtube.com.**youtube-service**.com

TL;DR Hazard: A Comprehensive Study of Levelsquatting Scams

Kun Du¹, Hao Yang¹, Zhou Li², Haixin Duan^{3(⋈)}, Shuang Hao⁴, Baojun Liu¹, Yuxiao Ye^{1,5}, Mingxuan Liu¹, Xiaodong Su⁶, Guang Liu⁷, Zhifeng Geng⁸, Zaifeng Zhang⁹, and Jinjin Liang⁹

F. Domain Abuse - Levelsquatting

F. Domain Abuse - Levelsquatting

Г				
	No.	Type		Percentage
	1	Porn	348,233	42.59%
	2	Lottery	281,425	34.42%
	3	Phishing	137,388	16.80%
	4	Blackhat SEO	,	4.93%
	5	Malware delivery	2,893	0.35%
	6	Others	7,426	0.91%
	Total	-	817,681	100%
	5	Malware delivery	40,316 2,893 7,426 817,681	0.35% 0.91%

No.	Type	Count	Percentage
1	Fake web portal	45,783	33.32%
2	Fake finance	41,322	30.08%
3	Fake advertisement	29,925	21.78%
4	Fake search engine	13,331	9.70%
5	Fake domain Parking		1.41%
Total	-	132,298	96.30%

817K levelsquatting domains detected.

Fig. 5: Levelsquatting FQDN categories.

Flawed browser implementations found.

Fig. 6: Phishin	g FODN sub-categories	
8	Mobile (Resolution: 720x1280)	
	Browser Version	Address Bar
	Firefox 64.0.2	← → ⊕ mails.tsinghua.
	Chrome 71.0.3578.99	tsinghua.edu.cn.locale.rebornplasticsurgery.com
	Opera 49.2.2361	mails.tsinghua.edu.cn.locale.rebornplasticsurgery.com
	Safari with WebKit 605.1.15	mails.tsinghua.edu.cn.locale.rebornplasticsure
	UCBrowser 12.2.6.1133	⑥ 清华邮箱

Fig. 9: Address bar of mobile browsers.

youtube.com -> youtubê.com

A Reexamination of Internationalized Domain Names: the Good, the Bad and the Ugly

Baojun Liu*, Chaoyi Lu*, Zhou Li[†], Ying Liu*⊠, Haixin Duan*, Shuang Hao[‡] and Zaifeng Zhang[§]

* Tsinghua University, [†] IEEE Member, [‡] University of Texas at Dallas, [§] Netlab of 360

facebook.com	faċebook.com	facebook.com	faceboôk.com
facebook.com	fácebook.com	fâcêbook.com	facebook.com
facebóók.com	fącębook.com	fącebook.com	facebook.com

Dataset collection

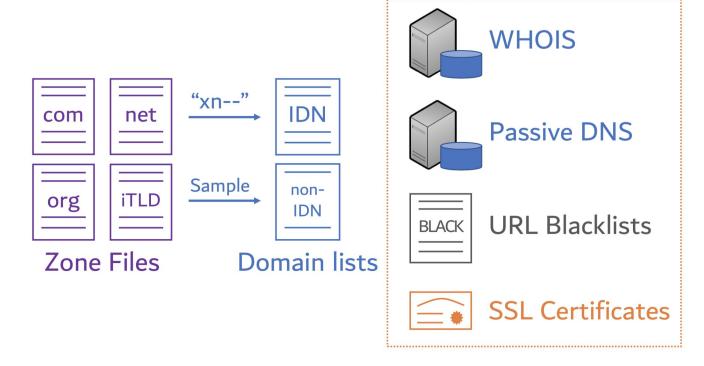
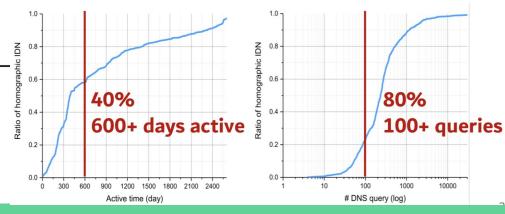



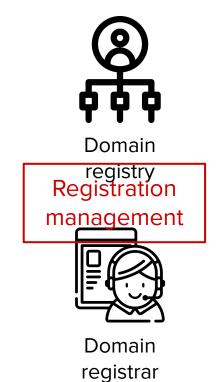
TABLE XIII: Top 10 brand domains ordered by homographic IDNs

Domain	Alexa	# IDN	Rate	Protective Registrations
google.com	1	121	8.0%	19
facebook.com	3	98	6.5%	0
amazon.com	11	55	3.6%	14
icloud.com	372	42	2.8%	0
youtube.com	2	41	2.7%	0
apple.com	55	39	2.6%	0
sex.com	537	36	2.4%	0
go.com	391	29	1.9%	0
ea.com	742	28	1.8%	O 1.0 7
twitter.com	13	25	1.6%	5
Total		514	33.9%	38 20.8

1,516 homographic IDNs detected.

The domains are visited very often.

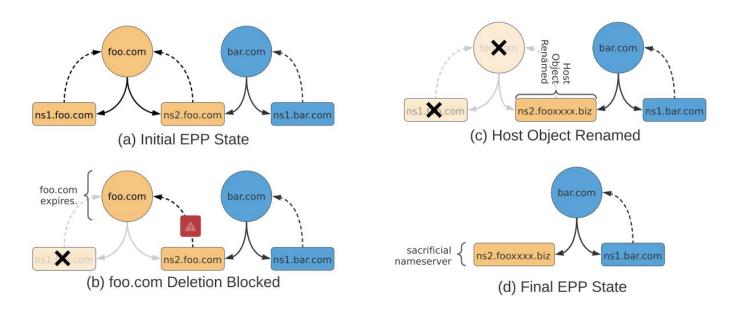
Platform	PC			
Browser	Ver.	iTLD IDN Supported	Homograph Attack	
Chrome	62.0			
Firefox	57.0	Need prefix	Bypassed	
Opera	49.0		Bypassed	
Safari	11.0			
IE	11.0			
QQ	9.7			
Baidu	8.7		Bypassed	
Qihoo 360	9.1			
Sogou	7.1		Vulnerable	
Liebao	6.5		Bypassed	


Flawed browser display.

F. Domain Abuse - Recommendations

Туре	Recommendation		
Typosquatting	Registration check; defensive registrations		
Bitsquatting	Registration check; use ECC-enabled RAM		
Combosquatting	Registration check; stop using combosquatting domains for benign services		
Levelsquatting	Registration check; browser fix		
Homograph attack	Registration check; browser fix; user education		

DNS Infrastructure


F. Domain Registration Management

Risky BIZness: Risks Derived from Registrar Name Management

Gautam Akiwate UC San Diego gakiwate@cs.ucsd.edu Stefan Savage UC San Diego savage@cs.ucsd.edu Geoffrey M. Voelker UC San Diego voelker@cs.ucsd.edu KC Claffy CAIDA/UC San Diego kc@caida.org

F. Domain Registration Management

What's the problem?

F. Domain Registration Management

How many domains might have been hijacked through this?

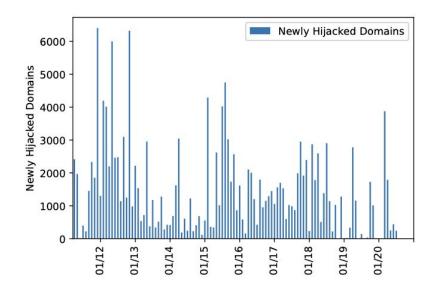


Figure 4: New hijacked domains per month from April 2011 to September 2020.

HAPPY MEASURING!