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ABSTRACT
HTTPS secures communications in the web and heavily relies on
the Web PKI for authentication. In the Web PKI, Certificate Author-
ities (CAs) are organizations that provide trust and issue digital
certificates. Web clients rely on public root stores maintained by
operating systems or browsers, with hundreds of audited CAs as
trust anchors. However, as reported by security incidents, hidden
root CAs beyond the public root programs have been imported into
local root stores, which allows adversaries to gain trust from web
clients.

In this paper, we provide the first client-side, nation-wide view of
hidden root CAs in the Web PKI ecosystem. Through cooperation
with a leading browser vendor, we analyze certificate chains in
web visits, together with their verification statuses, from volunteer
users in 5 months. In total, over 1.17 million hidden root certificates
are captured and they cause a profound impact from the angle
of web clients and traffic. Further, we identify around 5 thousand
organizations that hold hidden root certificates, including fake root
CAs that impersonate large trusted ones. Finally, we highlight that
the implementation of hidden root CAs and certificates is highly
flawed, and issues such as weak keys and signature algorithms are
prevalent. Our findings uncover that the ecosystem of hidden root
CAs is massive and dynamic, and shed light on the landscape of
Web PKI security. Finally, we call for immediate efforts from the
community to review the integrity of local root stores.

CCS CONCEPTS
• Security and privacy → Web protocol security; Authorization;
Browser security; • Networks→Web protocol security.
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1 INTRODUCTION
HTTPS provides encrypted communication and authentication
mechanisms between web servers and clients, and is increasingly
adopted on the Internet. Authentication between peers is powered
by digital certificates [19], and the issuance, management and re-
vocation of certificates heavily rely on a set of entities, systems
and policies, which are jointly referred to as the Web Public Key
Infrastructure (PKI). In the Web PKI trust model, digital certificates
are typically issued to websites by organizations called Certificate
Authorities (CAs). A small group of CAs (termed as root CAs) serve
as trust anchors in the Web PKI ecosystem, such that certificates
signed by them and subordinate organizations can pass verification.

Currently, several mainstream operating systems and browser
vendors maintain public lists of trusted root CAs, including Mi-
crosoft [2], Mozilla [57] and Apple [40]. The behaviors of public
CAs should undergo strict evaluation and regular audit [19, 33, 53],
and CAs can be removed from trusted lists upon security incidents
like certificate mis-issuance (e.g., ipS [69] in 2009, Trustwave [68] in
2012 and CNNIC [32] in 2015). For digital certificates to be verified,
operating systems are usually pre-installed with a local root CA
store that are copies from the public root programs. As a result,
certificate chains that link to root CAs beyond local stores will be
rejected by web clients.

However, recent security incidents and studies show that the
management of local root stores can be the "Achilles’ heel" of Web
PKI security. By injecting self-built root certificates into local root
stores, local software such as anti-virus and parent-control applica-
tions creates aman-in-the-middle proxy to filter SSL/TLS-encrypted
traffic [21]. This approach can also be used by government agencies
or malware, in order to monitor web users’ online behaviors [20, 58].
For instance, reports in 2019 show that citizens in Kazakhstan were
forced to import government-built CAs on their devices [58].

In this study, we term root CAs that are not trusted by public root
programs as “hidden” root CAs, because they are absent from the
lists and are not publicly visible. Particularly, we focus on hidden
root certificates that have been imported into local root stores (i.e.,
have gained trust from web clients). Certificate issuance of hidden
root CAs is usually not audited, allowing them to arbitrarily issue
forged certificates and intercept secure connections, which breaks
authentication and poses security threats [58]. The ecosystem of
hidden root CAs have not been well-studied in literature, because
it requires a client-side view of local root stores, thus existing cer-
tificate datasets (including active datasets [26, 38, 44] and passive
datasets [6, 7, 54]) are not suitable for this task.
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Research questions. In this paper, we report the first measure-
ment study that sheds light on a nation-wide ecosystem of hidden
root CAs. We aim at answering a set of research questions that
are critical to understanding their security impact and operational
flaws, including: How many web clients witness and actively trust
hidden root CAs? How much HTTPS traffic associates with certificate
chains signed by hidden root CAs? Who are operating the hidden root
CAs? And finally, are there implementation flaws of hidden root CAs
and certificates signed by them?
Our Approach. Seeking answers to these questions is made possi-
ble by cooperating with 360 Secure Browser [46], a leading browser
vendor in China with more than 100 million monthly active users.
Through careful design, the browser collects a small portion of cer-
tificate chains together with their client-side verification statuses
from web visits of millions of volunteers (see Section 3.1). From
certificate data collected during Feb and Jun 2020 (5 months), we
manually build filtering criteria from the X.509 standard to iden-
tify hidden root certificates. We also design and implement a suite
of automated methodology that groups root certificates by their
subject names (see Section 3.2), and then classify their usage.
Major findings. Our research reports several critical observations
on the hidden root CAs ecosystem. In general, the ecosystem is
dynamic and updating, with new hidden root CAs emerging and
quickly getting trusted by web clients. We identify 1.17 million
hidden root certificates that have been imported into local root stores
of web clients. Based on their subject information, we identify 5,005
certificate groups, and certificates in each group come from the
same organization. The impact of hidden root CAs can be profound,
as they are witnessed in 0.54% of all web connections, affecting
5.07 million web clients and putting security connections at risk of
interception.

Besides self-built root CAs of enterprises and local software, we
also uncover a large number of fake root CAs that impersonate
trusted ones to evade detection. For example, they use homoglyphs
to replace characters in authentic names (e.g., Verislgn with an
“l” and NetWork with an upper-case “W”). While not discovered by
previous works at scale, we show that fake root CAs are highly
trusted by web clients and pose security threats to up to 2.7 million
web clients.

As for operational flaws, we find that the security status of hidden
root CAs and certificates are worrisome: public key sharing, abuse
of wildcards and long validity period are prevalent. More than 87.3%
of hidden root certificates and 99.9% of leaf certificates that they sign
violate at least one X.509 standard requirements. In particular, 97%
of leaf certificates issued by hidden CAs use weak keys, increasing
their chances of being compromised.
Scope of study. In this paper, we aim to uncover a nation-wide
ecosystem of hidden root CAs and certificates in the Web PKI from
web clients’ perspective. While not included by public root pro-
grams, such root certificates have been trusted by web clients
(e.g., through importing into local root stores [21] or public key-
pinning [30]). Security threats are thus raised since secure web
connections can be intercepted. We fill this knowledge gap by ana-
lyzing large-scale certificate data and verification statuses.

Figure 1: Snippet of an X.509 Version 3 certificate

2 BACKGROUND AND RELATEDWORK
Below we provide background on the trust model and entities of
the Web PKI, particularly on root CAs and certificates. We also
provide the definition of the hidden root CA ecosystem, and present
previous works relevant to our study.

2.1 Web PKI Infrastructure
The Public Key Infrastructure (PKI) provides authentication mecha-
nisms between communication peers and is heavily relied on by
secure Internet protocols (e.g., TLS). Specifically, the Web PKI refers
to systems and policies that manage X.509 certificates issued to
websites, such as Certificate Authorities (CA).
Trust model and root stores. In the trust model of the Web PKI,
Certificate Authorities (CAs) are organizations that issue digital
certificates to other entities. On top of the model are root CAs that
hold self-signed root certificates. For flexibility and security consid-
erations, root CAs often delegate their signing abilities by issuing
intermediate certificates to other organizations [9, 29], which in
turn sign leaf certificates to websites. The bundle of a leaf certificate
and its signing certificates builds a certificate chain, linking the leaf
certificate to a root certificate.

For web clients, a leaf certificate passes verification only if it
has a valid chain to a root certificate that presents in its local root
store. Local root stores are usually pre-installed copies of public root
stores maintained by browsers and operating systems. Due to their
significant importance, the included root CAs should undergo strict
evaluation (e.g., by public root store policies [33]) and regular audit
(e.g., through Certificate Transparency [12]), and can be revoked
upon security incidents such as certificate misissuance [32, 68, 69].

In academic and industrial best security practice, public root
stores maintained by Mozilla [57], Microsoft [2] and Apple [40] are
most commonly adopted [5, 6, 21, 23, 65]. As of Sept. 2020, 590 root
certificates are included by at least one of the three programs.
X.509 certificate format.Most certificates on the web adopt the
X.509 Version 3 format [19] and Figure 1 shows a snippet. The
major fields include distinguished names of its subject and issuer,
its subject public key and signature, its validity period, and cer-
tificate extensions. Specifically for root certificates, additional re-
quirements should apply in order to ensure proper verification of
certificate chains according to the requirements of RFC standards
(e.g., basicConstraints extension must be set to TRUE) [19, 33].



Figure 2: Overview of Hidden Root CA ecosystem.

These requirements are leveraged in Section 3 to filter root certifi-
cates in our dataset.

2.2 The “Hidden” Root CA Ecosystem
Aside from the hundreds of root CAs in public root stores (i.e.,
Mozilla, Microsoft and Apple), other entities may also function like
root CAs and issue digital certificates. We term these as “hidden”
root CAs and certificates, as they are not visible to public root
programs and are difficult to uncover.

Some well-known sources of hidden root certificates are shown
in Figure 2, including local software (e.g., VPNs), malware [20],
enterprise networks [21] and government agencies [58] self-built
CAs. Unlike trusted ones, hidden root CAs typically do not publish
policies that are reviewed by other organizations. Meanwhile, their
certificate issuance cannot be monitored by systems like Certificate
Transparency [12].

For a web client, trusting hidden root certificates can be risky,
as their behaviors are not publicly visible. While hidden root cer-
tificates should be rejected during certificate chain verification
(because they do not present in public root stores), it is possible for
them to be imported into local root stores (e.g., manually or by local
software) [58]. If abused, secure connections can be intercepted and
monitored with forged certificates [21].

The use cases of hidden root CAs make them fundamentally dif-
ferent from trusted ones, thus best security practices of certificate
issuance may not apply globally. For example, hidden root CAs of
malware are built to intercept secure connections, thus their adop-
tion of weak keys and insecure algorithms should not be considered
a problem. By contrast, self-built root CAs of enterprise networks
and anti-virus software should comply with the security require-
ments, in order to prevent themselves from being compromised. To
address this issue, in our methodology (Section 3) we group hidden
root CAs and certificates into different categories and discuss them
separately.

2.3 Related work
As HTTPS protocol is increasingly adopted in the web, efforts from
the community have been devoted to studying security issues of the
certificate ecosystem. Previous works focused on the measurement
and analysis of HTTPS interception are most relevant to our study.

To summarize the security threats posed by HTTPS interception,
[21] and [67] studied dozens of client-end applications (e.g., an-
tivirus software and proxies) that insert self-build root certificates
and perform TLS interception. They evaluated the whole process
of certificate generation and validation by code analysis, and un-
covered several implementation flaws. Besides, Durumeric et al.
further analyzed HTTPS interception from a web-server view and

concluded that the presence of middle boxes can heavily reduce
the security of HTTPS connections [28].

To describe the prevalence and reasons of HTTPS interception,
in 2014, Huang et al. actively sent SSL handshakes towards Face-
book web-server and extracted certificates [39]. They found an
interception rate of 0.2%, and manually categorized the root certifi-
cates of hijacked traffic according to their Issuer fields. Following,
in 2016, O’Neill et al. conducted similar experiments, detected TLS
interception by actively connecting controlled servers, and also
discovered HTTPS hijacking from malware and spam tools based
on information of Issuer fields [56].

Unlike previous works, in this study, we seek to understanding
and characterizing the ecosystem of hidden trust anchors in the client-
end local root stores from a national-wide view, rather than simply
detecting TLS interception behaviors from the perspective of a
handful of websites. As a result, although previous studies have
collected and built various certificate datasets, we find that none
of these datasets could be applied in our study due to the lack of
user-side certificate verification status.

Typically, certificate data are captured by active scanning or
extracted from passive traffic, and could be leveraged to study
certificate mis-issuance by CAs [6, 26, 44] and vulnerability assess-
ment [5, 27, 38].

Specifically, as for active certificate datasets, Holz et al. [38] stud-
ied the X.509 infrastructure by actively scanned Alexa Top Sites
and passively collected traffic from three institutions. Durumeric et
al. [26] completed 110 TLS scans on the entire IPv4 address space
and studied the status of certificate issuance and HTTPS adoption
rates. Following, they published Censys [25], a database constructed
by regular Internet-wide scans, including scans of certificates. Cen-
sys has been leveraged by to measure HTTPS adoption rate [31]
and study certificate revocation strategies [60]. Similarly, in 2016,
Cangialosi et al. released another dataset called Rapid7 [10], which
actively scans certificates in the IPv4 address space every week.

As for passive certificate datasets, ICSI networking group built
SSL Notary [7] that passively extracts certificates from TLS traffic
of ten institutions. SSL Notary has been used to study TLS warn-
ings [5] and trust relationships [6]. In 2017, Acer et al. from Chrome
analyzed certificate compliance errors reported by browser [4]. Sim-
ilarly, another recent work was done by Oakes et al. in 2019, who
harvested and analyzed residential certificate chains by cooperat-
ing with a web monitoring software [54]. In addition, Certificate
Transparency (CT) [35] is now widely supported on the web [61],
which aims to collect and audit all trusted certificates.

However, these datasets cannot be applied in our study. To iden-
tify hidden root certificates in user-side local stores, we need to
collect certificate chains together with their verification statuses
from the view of the client-end. Therefore, datasets collected by
active scans are not suitable, and public passive datasets like Notary
do not contain the verification statuses. We address this challenge
by collaborating with a leading browser vendor and collect certifi-
cate data from real visits of volunteers (Section 3).

3 METHODOLOGY
In this section, we elaborate on our workflow of certificate data
collection and methodology of root certificate grouping. Then, we
also discuss potential ethical concerns before presenting our results.



Figure 3: Methodological overview of certificate data collection and analysis

3.1 Certificate Data Collection
The goal of this study is to identify hidden root certificates in use
and to evaluate the real-world impact of those trusted byweb clients
(i.e., installed into local root stores). To this end, we collaborate
with 360 Secure Browser [46], a popular PC browser built over
Chromium [13] with over 100 million monthly active users in China
mainland [45]. Since 2018, the company has been maintaining its
own root certificate store [47] that is shipped into the browsers. To
help evaluate CAs in the wild and decide whether they should be
included, 360 Secure Browser collects certificate data from volunteer
users who opt-in this program. Data collected from Feb 1, 2020
to Jun 30, 2020 (5 months) is provided to us for research purposes.
Certificate data collection procedure. When a volunteer user
visits a website over HTTPS with 360 Secure Browser, the browser
first fetches and verifies the web server’s certificate chain. Same as
Chromium1, 360 Secure Browser calls underlying operating system
APIs (e.g., CryptoAPI on Windows [51]) for certificate verification.
The APIs return a double-word STATUS_CODE carrying all verifica-
tion errors that occur. Each bit of the code indicates one type of
verification error and we list the mappings in Table 9 of Appen-
dix A. If any bit is set in STATUS_CODE (i.e., an error occurs), the
certificate chain is considered invalid and the browser terminates
the connection, showing an error message to its user.

Particularly, an asserted AUTHORITY_INVALID bit indicates that
the root certificate is not trusted by the client’s local root store. In
addition, the browser examines whether the root certificate includes
any of three large public root programs (Microsoft, Mozilla and
Apple), and encodes the result in an additional PUBLIC_TRUSTED
flag. This extra check is done backstage by matching the public
keys of root certificates, and the result is not shown to web users.

For ethical considerations (Section 3.4 discusses more), a certifi-
cate chain is collected only when PUBLIC_TRUSTED is unset, or if
any bit is set in STATUS_CODE. That is, the browser only collects cer-
tificate chains that link to hidden root CAs, or are considered invalid
by the client’s operating system. Valid certificate chains signed by
root CAs in the three public programs are not recorded and are
only counted for statistical purposes. Figure 4 shows the format
of a collected certificate chain, including (anonymized) client ID,
time of collection, hashes and PEM encoding of each certificate and
verification status codes.
Filtering hidden root certificates. Following, we need to filter
root certificates from certificate chains for further analysis. Due

1Historically, Chrome and Chromium use the local root store of underlying operating
systems, but are transitioning to their own root program [14]. 360 Secure Browser
does not use the Chrome Root Store.

Figure 4: Example chain with three certificates. The root
certificate is not trusted by the client’s local root store
(AUTHORITY_INVALID is set) or the public root programs
(PUBLIC_TRUSTED is unset). The chain is considered invalid
by the web client (STATUS_CODE has bit asserted).

to web server misconfiguration and network errors [5], the PEM-
encoded certificate chain (field CERTS_PEM in Figure 4) can be dis-
ordered or incomplete. As a result, simply taking the last certificate
in the chain as root can be error-prone. Fortunately, the X.509 RFC
standard [19] has special requirements for root certificates and we
check all certificates against them.

We identify the root certificate of a chain, if it satisfies all of the
following criteria:
● The certificate includes a basicConstraints extension with
a cA value set to TRUE.
● The certificate includes a keyUsage extension with an as-
serted keyCertSign bit (the first two criteria indicate that
the certificate is held by a CA).
● The distinguished names of subject and issuer are non-
empty and identical.
● If included in the certificate, the subjectKey Identifier
and authorityKeyIdentifier are identical (the last two
criteria are set because root certificates are self-signed).

To further filter hidden root certificates, we leverage the PUBLIC_
TRUSTED flag drawn from the browser’s additional check. If a root
certificate is identified in a chain with the above criteria, plus the
PUBLIC_TRUSTED flag of this record is unset, we label it as a hidden
root certificate. If no root certificate can be found in a chain, we
consider the record incomplete and remove it from our dataset.
Finally, the AUTHORITY_INVALID flag from certificate verification
APIs tells whether the hidden root certificate is rejected by the
client, or has been installed into the local root store.

3.2 Grouping Hidden Root Certificates
Our next research questions are “who owns the hidden root certifi-
cates” and “how are they currently operating”. Recall that hidden root
certificates can be held by various parties, such as local software
and enterprise networks. One organization can also create multiple



root certificates with different public keys but identical or similar
subject names (e.g., “Globalsign Root R1”, R3 and R6), which often
share the same properties (e.g., length of validity period). We aim to
identify certificate groups held by the same or similar organizations,
and then classify their usage.
Inferring certificate ownership. We acknowledge that, due to a
lack of ground-truth, identifying the ownership of root certificates
is difficult even for those in public root programs. To our best knowl-
edge, Mozilla’s Common CA Database (CCADB) [52] provides the
most comprehensive and audited ownership information of root
certificates. A recent work [48] supplements the CCADB dataset
and now labels ownership for 6,846 root certificates [49]. However,
as hidden root CAs are invisible to public programs, none of our
collected certificates are found in the public datasets.

Without auxiliary information from external data feeds, we fol-
low the practices in previous studies [39, 44, 56] that leverage sub-
ject distinguished names to infer certificate ownership. That is, cer-
tificates with an identical set of commonName (CN), organization
(O) and organizationUnit (OU) in its subject belong to the same
organization.
Identifying subject templates. CAs holding multiple root certifi-
cates often generate them with subject templates, which should
be clustered as one certificate group. For example, the subject
commonName in root certificates of Whistle (a web debugging tool)
follows a template of CN=whistle.[0-9]*. A previous research [23]
manually identifies 46 subject templates in regular expressions, and
we check our dataset against their list. Unfortunately, only 3 tem-
plates hit our data (2 templates match only one certificate).

To comprehensively and automatically discover subject tem-
plates from certificates, we are inspired by Server Log Parsing tasks
that identify templates from inconsistently formatted logs. Consid-
ering subject names as logs, we select the Drain algorithm [37] for
this task. Designed over a 5-layer Directed Acyclic Graph (DAG),
Drain takes raw log messages as input and outputs structured mes-
sage templates, and produces 92% to 99% parsing accuracy on 11
log datasets [36]. For each certificate in our dataset, we concatenate
all fields in its subject distinguished name (e.g., commonName and
organization) into a log string as the input of Drain. For com-
patibility reasons, special characters that are not common in log
messages (e.g., commas and at signs) are replaced with white spaces.
In total, Drain outputs 13 subject templates from 1.1 million hidden
root certificates (including one discovered by [23]), and no false
positives are found during manual verification (see Section 3.3 for
evaluation).
Unsupervised Grouping.After identifying subject templates, hid-
den root certificates that match one of the following criteria are
grouped:

● Certificates have identical, non-empty values of commonName
(CN), organization (O) and organizationUnit (OU) in
their subject distinguished names.
● Subject distinguished names of certificates match the same
template.

3.3 Evaluation and Limitations
Evaluating hidden root certificates. During data collection, we
use the PUBLIC_TRUSTED flag provided by 360 Secure Browser to

identify hidden root certificates, and here we use the Certificate
Transparency (CT) database to verify if they are truly beyond public
root stores. To monitor the certificate issuance procedure, since
June 2016 all CAs in public root stores are required to submit all
certificates that they sign to CT for future queries [12]. As a result,
hidden root certificates should not appear in CT databases.

For evaluation, we query all (1.19 million) hidden root certificates
in the CT database provided by our industrial partner’s CT monitor
and find only 6 hits. After manual inspection, we confirm that these
certificates are falsely included in the CT database because several
CT nodes use expanded root stores [43]. In the end, we are confident
that the PUBLIC_TRUSTED flag of 360 Secure Browser is effective,
and that the hidden root certificates we identify are not included
by public root programs.
Evaluating grouping algorithm. To group hidden root certifi-
cates, we use the Drain algorithm to identify templates from sub-
ject distinguished names. To our best knowledge, there have not
been other methods designed specifically for this task and we select
Drain because it is a state-of-the-art tool and shows good accuracy.
Due to a lack of template ground truth in our dataset, we choose to
manually evaluate the algorithm on a sample of root certificates.
In detail, we inspect a random sample of 10,000 hidden root certifi-
cates in our dataset, and manually generate 11 subject templates.
Drain identifies all 11 templates, and the other 2 templates from the
larger dataset are missed because the number of their associated
certificates is low in our random samples. As a result, though not
specifically designed for this task, we believe that Drain outputs
correct subject templates with high confidence.
Limitations. First, to identify root certificates from certificate
chains, we set filtering rules that are driven from the standard
requirements of X.509 format (see Section 3.1). We understand that
some hidden root CAs (e.g., of local software) may not follow the
RFC standard requirements and will thus be overlooked. However,
we believe this filtering process also helps us to remove false posi-
tives. And we prefer to provide lower-bound numbers rather than
inflating them. Besides, if a client is infected by malware, it may
also cause the data collection results to be polluted. Although our
results theoretically only reflect a lower bound of the hidden root
CA ecosystem, as shown in Section 4, we are still able to identify
more than 1.19 million hidden root certificates that are witnessed
by real clients. Therefore, we believe our dataset is sufficient to shed
light on a nationwide ecosystem. Second, due to a lack of audited
ownership data, we borrow the approach from previous works and
infer certificate ownership from its subject distinguished names.
We acknowledge that the subject names may not point to the real
organizations behind, for example, self-built CAs of malware may
fill deceptive names in the subject fields. While this approach in-
evitably has limitations, for unidentifiable certificates, we attempt
to search in several auxiliary data feeds including threat intelli-
gence and sandbox logs, as a best-effort approach. Third, instead of
sensitive PII (Personal Identifiable Information) such as the user’s
IP address or device ID, 360 Secure Browser utilizes the timestamp
when the user joined the data collection program as its client ID
(see client_id in Figure 4), to better protect user privacy. Although
this client ID is less accurate than PII, e.g., one timestamp could
be associated with more than one real user and reinstalling the



browser will change the ID, we believe this cost of inaccuracy is
acceptable to mitigate privacy risks.

3.4 Ethical Considerations
One major ethical concern of this work centers on certificate data
collection from users of 360 Secure Browser. To understand the
ecosystem of hidden root CAs, we need certificate chains together
with their verification statuses at the client-end. This goal cannot be
fulfilled through active scanning (e.g., Censys [25]) or passive traffic
analysis (e.g., ICSI Notary [7]). The dataset is only collected from
volunteer users that join the program in “opt-in” mode. Consent is
provided to users of 360 Secure Browser that states the collected
data (e.g., certificate chains and verification statuses), purposes and
benefits (e.g., help evaluate the 360 Root Certificate Program [47]),
and needs explicit agreement. The data collection process is under
the supervision of legal departments of the company (providing
similar functions as an IRB).

Another concern is the collected certificate data may harm user
privacy, as the history of web visits is obtained (e.g., through
hostname in certificate records), and several signed hosts them-
selves may also be sensitive. We tried our best to mitigate potential
ethical risks in this regard. First, the data collection methodology
only captures certificate chains that link to hidden root CAs or that
are invalid, only accounting for 0.54% of all web visits (Finding
4.1). Thus the majority of web visits associated with valid cer-
tificate chains signed by trusted root CAs are not collected and
are only counted for statistical purposes. Meanwhile, we carefully
anonymize real users by using the timestamp they joined the data
collection process as the client-IDs, which could avoid harvesting
any sensitive PII (Personally Identifiable Information) of volunteers.
Besides, when analyzing invalid websites and hosts signed by hid-
den roots, we focused only on insensitive statistics such as the
overall scale and percentage of different certificate validation er-
rors. We did not perform any in-depth examinations of the domain
content or their access relationship between clients to minimize
privacy concerns.

The collected certificate dataset is securely stored on servers that
maintain the client-side data by 360 Secure Browser. Researchers in
this project obtain access to the dataset via a temporary internship.
All analysis programs are run on the company’s virtual environ-
ments and we do not share the dataset with third parties. In the end,
through our best efforts, we believe that operations in this study
adhere to ethical conventions.

4 SCALE AND IMPACT ANALYSIS
This section uncovers the basic characteristics (scale, ownership,
active patterns, impact) of the hidden CA ecosystem.

4.1 Scale of Hidden Root Certificates
Finding 4.1: Within a five-month period, over 1.19 million hid-
den root certificates are detected as being used to threaten the
security of HTTPS connections, covering 0.54% of all visits.

Dataset overview. Table 1 overviews our dataset. During Feb and
Jun 2020, volunteer users of 360 Secure Browser produced over 41
billionweb visits over HTTPS. The browser collects over 222million

certificate chains that link to a hidden root, and they account for
0.54% of all web visits. Using the criteria in Section 3, we identify
over 1.19 million distinct hidden root certificates (distinguished by
certificate hash values) that meet the X.509 standard requirements.

To evaluate their security impact, we then split the hidden root
certificates by whether they have been trusted by web clients. Gen-
erally, hidden root certificates are invisible to public root programs,
thus they should be rejected during verification. However, surpris-
ingly, we find that only 21 thousand (1.8%) hidden root certificates are
rejected by all web clients that witness them. It suggests that, though
not included in public root programs, hidden root certificates have
actually been widely installed into local root stores. In the follow-
ing analysis, we neglect the 21 thousand root certificates that are
rejected by all clients, as their security impact is insignificant.
Certificate group overview.We run the grouping algorithm on
all 1.17 million hidden root certificates that are imported by clients,
and it produces 5,005 certificate groups. Root certificates in one
group are considered to be held by the same organization.

In terms of the size of certificate groups, as expected, the distribu-
tion has a long tail: 4,362 groups (87.2%) only include one certificate,
and the remaining 12.8% groups account for 99.6% of all certificates.
Figure 5 corresponds to each certificate group with their numbers of
associated HTTPS connections and web clients that witness them.
Dozens of certificate groups (at the top right corner of Figure 5)
cause profound impact. For example, the largest group contains
254,412 root certificates that belong to Certum Trusted NetWork
CA 2 (impersonating Certum CA [11]; the authentic CA has a lower-
case ‘w’ in “Network”). Another group contains only 2 certificates
that belong to Verislgn trust Network (impersonating Verisign
CA [66] by replacing the ‘i’ in “Verisign” with ‘l’) but is witnessed
by over 1 million web clients. In Section 4.3 we further discuss the
impersonation behaviors of hidden root CAs.

Figure 5: Size and impact of certificate groups

In the following sections, we focus on the top 100 certificate
groups that each associate with over 1,000 web clients and 5,000
HTTPS visits. The top 100 groups account for 97.5% of all hidden
root certificates that are imported by clients, as well as 98.9% of
their associated HTTPS visits.

4.2 Active Time
We define the active date of a hidden root certificate as the number
of days when certificate chains linked to this root are captured



Table 1: Certificate dataset overview

Type of Root Cert Filtering Condition # Distinct Root Certs # Cert Chains # Leaf Certs # FQDNs

PUBLIC_TRUSTED=FALSE,
Trusted by at least one client 1,175,145 (98.24%) 222,977,356 59,817,585 1,333,931

Hidden CAs PUBLIC_TRUSTED=FALSE,
Rejected by all clients 21,010 (1.76%) 263,109 112,946 15,566

Public Trusted CAs
PUBLIC_TRUSTED=TRUE,
STATUS_CODE has bits set 615 241,541,342 3,647,095 1,871,131

by the browser. During the 5-month data collection period, 5,373
(0.4%) hidden root certificates are active for over 100 days. Looking
from the angle of the top 100 certificate groups, their active time in
the 5-month period can be up to 146 days on average. That is, the
vast majority of organizations behind the top groups have at least
one active hidden root certificate every day that is trusted by web
clients.

Finding 4.2: The ecosystem of hidden root CAs is dynamic and
updating, as new emerging CAs and retiring ones are both ob-
served.

To quantify the “stability” of top certificate groups, we calculate
the coefficient of variation (CV, the ratio of standard deviation to
the mean) of their daily count of associated HTTPS visits. A stable
certificate group should have daily traffic volume that does not vary
greatly. Empirically, certificate groups with a CV greater than 1
are considered unstable (for reference, the CV of all daily traffic
associated with hidden root certificates is 0.33). We find 13 certifi-
cate groups that match this criterion, and Figure 6 shows some
examples. The first group is only active for one day (Mar 14), which
belongs to a web debugging tool. We suppose it is included in our
dataset because of temporary tests. The following two certificate
groups are retiring. The traffic decrease of CEGN certificate group
is likely caused by a failure of promotion, as the vast majority of
clients reported an AUTHORITY_INVALID error. The root certificate
held by BJCA was used to sign yzt.beijing.gov.cn, but was re-
placed on Apr 18 by a trusted certificate chain. The bottom three
certificate groups are emerging, as their count of root certificates
and associated HTTPS traffic both rise (independent of the amount
of overall traffic), which suggests a possible growth in web clients
that are trusting them.

Interestingly, we find that over 183 thousand (15%) of hidden root
certificates are created during our 5-month data collection period,
and are quickly gaining trust from web clients. The largest batch
of creation appeared on Jun 13 with 2,853 new root certificates.
Among this batch, 2,505 certificates belong to one fake CA (Sec 4.3
describes more) that impersonates GlobalSign [62].

4.3 Categories of Ownership
Finding 4.3: Three major sources of hidden CAs are identified
through manual inspection: Self-built CAs (50 groups), Fake root
CAs (11 groups) and Local software CAs (24 groups).

Due to a lack of ground truth, determining the category and
purpose of each certificate group is non-trivial. We choose to man-
ually infer this information from the subjects of the top 100 root

Figure 6: Examples of temporary, retiring and emerging hid-
den root certificate groups.

certificate groups. For example, subject O=Venus, OU=Venus VPN
is used by Venustech VPN [42] and categorized as local software. If
the subject is not directly identifiable, we search keywords and hash
values of the certificate in search engines to infer its ownership. The
manual classification is performed by three security researchers,
and a certificate is classified only if over two researchers give the
same label.

As shown in Table 2, the ownership of 85 certificate groups
are identifiable and fall into three categories, including “self-built
CAs of organizations”, “fake CAs” and “local software”. Another 15
groups fall into the “unknown” group due to a lack of identifiers.

Finding 4.4: Self-built CAs are still widely used by organizations
such as government agencies and enterprises to issue website
certificates. However, over 75% of certificate chains suffer from
verification errors (e.g., weak signature algorithms).

Self-built root CAs of organizations. 50 of the top 100 certifi-
cate groups are held by self-built root CAs of enterprises, indepen-
dent organizations (e.g., digital authentication centers) and gov-
ernment agencies. In total, they sign certificates for 3,311 fully-
qualified domain names (FQDNs). However, more than 75% of cer-
tificate chains that link to self-built root CAs receive verification
errors from web clients (i.e., are invalid). The most common er-
ror is WEAK_SIGNATURE_ALGORITHM (78.3% of all errors), suggesting
prevalent adoption of weak security practices.

One may argue that self-built root CAs are for internal use only
(e.g., in enterprise networks) and that domains signed by them
are not publicly accessible; despite that their security policies are
worrisome, their impact is insignificant. However, we perform an



Table 2: Subject category of top 100 hidden certificate groups

Categories # clusters
(groups)

# hidden
root certs

# affected
connections

# affected
clients

Invalid
(Authority)

Invalid
(Other) Example of hidden root certificate

Enterprise Self-built 24 48 2,071,344 199,743 (3.94%) 35.54% 75.66% CN = SZSE ROOT CA, O = Shenzhen Stock Exchange
Digital Authentication 13 18 3,261,905 539,711 (10.65%) 28.37% 96.66% CN = CFCA ACS CA, O = China Financial Certificate Authentication
Government Self-built 13 16 314,351 62,032 (1.22%) 30.46% 89.67% O = National E-Government Network Administration Center

Fake Authentications 11 817,532 192,901,548 2,798,985 (55.21%) 0.00% 0.25% CN = VeriSlgn Class 3 Public Primary Certification Authority - G4

Packet Filter 11 15,587 3,622,177 73,725 (1.45%) 13.57% 14.39% CN = NetFilterSDK 2
Proxy/VPN 10 90,131 3,050,138 1,029,648 (20.31%) 2.26% 4.27% CN = koolproxy.com, O = KoolProxy inc
Security Software 2 7,187 509,645 4,719 (0.09%) 0.01% 0.32% O = Beijing SkyGuard Network Technology Co., Ltd
Parent Control 1 7,554 70,8129 7,787 (0.15%) 0.00% 0.57% CN = UniAccessAgentFW 2

Unknown 15 207,957 14,048,377 289,198 (5.07%) 2.89% 4.73% CN = VRV NDF RootCA 2

additional scanning experiment showing that amajority of self-built
root CAs do sign certificates for websites open to the public.

We deploy several controlled Virtual Private Servers on Alibaba-
Cloud [18], located in the US, Singapore, Germany and China. On
each machine, we use OpenSSL to fetch and verify certificate chains
of the 3,311 FQDNs that link to self-built root CAs in our dataset.
In January 2021 (6 months after the data collection period ended),
we are able to fetch certificate chains of 2,439 FQDNs (73.6%) that
still link to 36 (72%) self-built certificate groups. We also inspect the
remaining 14 organizations that disappear in the scanning experi-
ment, and find 7 of them are for internal use, thus the certificates
cannot be reached by our active scanners. The remaining 7 groups
are retired by new self-built root CAs or publicly trusted root CAs.
In the end, our measurement findings suggest that weak security im-
plementations are common among self-built root CAs, and should
be fixed as they widely sign websites that are publicly accessible.

Finding 4.5: Fake CAs which impersonate large trusted CAs
with good reputation to evade detection, are becoming emerg-
ing security threats. These CAs infecting more than 2.7 million
devices and are highly trusted by web clients, as nearly none
reports “Authority Invalid” errors.

Fake root CAs. 11 of the top 100 certificate groups are classified as
fake root CAs that impersonate trusted CAs with deceptive subject
names. As shown by examples in Table 3, they replace characters in
authentic CA names with homoglyphs (e.g., Verislgn with an “l”
and NetWork with an upper-case “W”) or extend their words (e.g.,
extend GlobalSign to GlobalSignature). However, none of the
certificates’ public keys are present in the official lists of large CAs
(e.g., public key lists of GlobalSign [62] and Certum [11]).

In Table 2, we show that these fake CAs associate with the
most web visits (192M) and certificate chains (2.7M), and almost
all of them are trusted by web clients (only 0.0001% of connections
receive an AUTHORITY_INVALID error). Compared to self-built CAs
that commonly use weak keys and algorithms, fake root CAs are
more secure in implementation, with an invalid rate of only 0.25%.
However, fake root CAs still introduce security threats, as they have
been found to illegally issue certificates for popular websites [39].

Uncovering the real owner behind fake root certificates is chal-
lenging, as the subjects are deceptive names that do not provide
valuable information. To explore by our best effort, we leverage
threat intelligence systems and sandbox logs of malware. We first
search all fake root certificates in threat intelligence systems (such
as VirusTotal), but only find one hit. The matched certificate is

associated with a Trojan [17] and is witnessed by 6.8 thousand
web clients in 75 thousand web visits during our data collection
period. Following, we also seek for cooperation with two leading
security companies and match the certificates in their sandbox logs
of malware samples. During malware installation, the sandboxes
monitor the local root store to track modifications. We are able
to find logs of 43 fake root certificates in our dataset, which as-
sociate with “Trojan”, “CoinMiner” and “Adware”. Again, we are
not able to identify the real owner of all fake root certificates in
our dataset, but information embedded in threat intelligence and
sandboxes show their potential connection to malicious parties.
However, considering the large volume of HTTPS connections and
web clients that are affected by fake CAs, we speculate that except
for malicious software, hidden certs in this category may also come
from other sources, including spamming tools and free applications
that irregularly intercept user traffic in an impersonal manner.

Table 3: Examples of fake Certificate Authorities

Subject Common Name # hidden
root certs # connections # FQDN

Certum Trusted NetWork CA 2 254,414 158.54M 1,137,121

VeriSlgn Class 3 Public Primary
Certification Authority - G4 2 21.20M 210

GlobalSign Root CA 1,419 7.61M 6,023
GlobalSignature Certificates CA 2 1 2.85M 74,555
GlobalSign Root CA R3 136,196 1.03M 47,347

Small DigiCert Baltimore Root 2 135,258 0.65M 30,316

Local software. 24 of the top 100 certificate groups are held by
local software, including 11 packet filterers, 10 Proxies/VPNs, 2
security software and 1 parent control application. These hidden
root certificates are imported at software installation, for purposes
such as virus detection, download acceleration and ad blocking. As
we do not find direct evidence of malware in this category (which
might be identified as fake CAs instead), the software together with
its root certificate is likely installed manually by web users (i.e.,
users want their connections intercepted for benign reasons).

In previous studies of HTTPS interception, benign local software
accounts for the most intercepted traffic. For example, [23] reports
that anti-virus software performs 53% of all HTTPS interception,
and the ratio for firewalls in [56] is 69%. However, in our dataset
the ratio of intercepted connections by local software is lower, only
3.58%. As for the reasons, on the one hand, local software involved
in our study may be not implemented with identifiable subject



information, resulting in their classification as unknown at best.
On the other hand, we observe the hidden CA ecosystem from a
different, passive perspective than previous active measurements,
which may better reflect the nature phenomenon. That is, “user-
informed” or “regulated” (e.g., security software and well-identified
agents) interceptions may not predominate as commonly expected.
Other unknown owners. From manual subject classification, we
cannot identify 15 certificate groups, holding a total of 207K (17.6%)
hidden root certificates. Most of them use neutral keywords to
create certificate subject names, such as root, trust, tech and ca,
and we do not have search results of their public keys in search
engines or threat intelligence databases.

4.4 Impact on Web Hosts and Web Clients
Finding 4.6: On average, we observed 1.48 million HTTPS traffic
from 300 thousand clients associated with hidden root CAs per
day, demonstrating the broad impact on web clients.

Figure 7: Daily count of hidden root certificates captured and
associated logs of HTTPS web visits.

Scale of web visits. Figure 7 shows the daily count of hidden root
certificates witnessed by clients and their associated web visits. On
average, 1.48 million secure connections use certificate chains that
link to a hidden root. During the 5-month data collection period,
222 million certificate chains that link to a hidden root are recorded,
accounting for 0.54% of all web traffic. We also find that up to
96.4% of traffic do not receive any verification errors from local
operating systems. Only 1.5% received AUTHORITY_INVALID errors,
and the remaining 2.1% of certificate chains are invalid because
of other issues (e.g., DATE_INVALID which means the certificate is
not within its validity period). This result echoes with our earlier
findings that hidden root certificates are widely imported by web
clients (Findings 4.1 and 4.5).
Hosts signed by hidden roots. As presented in Table 1, a total
of 1.3 million fully-qualified domain names (FQDNs) were found
to be issued certificates from hidden roots in the period of data
collection. Further, we examined the popularity of these domains
with Alexa Top Rank [41]. As shown in Table 4, 815K (61.11%) of
FQDNs are within the top 1M rank. Also, there are a significant
number (519K, 38.89%) of long-tail domains (not ranked within
top 1M) being affected by hidden roots. Besides, in addition to
hosts in the subject fields, certificates are also valid for entities
in subjectAlternativeName (SAN) extensions. As defined in the
X.509 standard [19], hosts embedded in these extensions are also
threatened by hidden root CAs. By extracting the two most com-
mon formats, dnsName and ipAddress from SAN extensions in

leaf certificates, we totally identify that 1.54 million FQDNs under
792K Second-Level Domains (SLD) and 12,496 distinct IP addresses
covering 48 countries are “potentially” affected. This result also
illustrates the widespread impact of hidden roots on web servers.

Due to ethical concerns, our data analysis of affected hosts is
limited to the above statistics. In order to protect user privacy, we
neither analyzed the specific content of the hosts nor did any in-
depth exploration of the domains accessed by individual customers
to avoid exposing sensitive information.

Table 4: FQDNs signed by hidden root certificates grouped
by Alexa rankings. One domain can have multiple FQDNs.

Alexa Rank 1-100 100-10K 10K-1M >1M
# FQDN 386K (28.95%) 309K (23.13%) 120K (9.03%) 519K (38.89%)

# connections 110M (49.42%) 68M (30.42%) 16M (7.32%) 29M (12.84%)

Scale of web clients. We use the anonymized client ID in the col-
lected records to give an estimation2 of web clients that witness
hidden root certificates. In total, 360 Secure Browser captures hid-
den roots from 5.07 million volunteer users during the 5-month
data collection period, with an average of 300 thousand clients
per day. 4.67 million (92.1%) web clients have trusted at least one
hidden root CA (i.e., the AUTHORITY_INVALID bit is cleared for at
least one hidden root certificate), again echoing with our findings
that hidden root certificates are widely trusted. We also find that
95% of such clients only have one hidden root certificate through
analysis of their verification codes.

Although on average 0.54% of daily web traffic is covered by
hidden roots, the proportion per individual client varies widely. For
more than 95% of clients, the percentage is less than 0.01%, while
0.28% of clients have more than 90% of their web visits impacted.
To figure out why certain clients were impacted so heavily, We
sampled 104 cases who had more than 500 web visiting records
and an affected rate of over 99% for further analysis. One may
attribute this high percentage to interceptions from Local Software
like proxies and packet filters, but we find this situation appeared
on only 10.58% clients (11 of 104). On the contrary, hidden roots
from Fake Authentication (64 clients, 61.54% of 104) lead the pack.
By examining the traffic timestamps of those clients, we also find
that, hidden roots from Fake Authentication would be constantly
updated on the client-side, possibly to avoid detection. Specifically,
3 of the 104 cases had successively installed more than 20 hidden
root certificates from the same issuer, and the average lifetime (the
period they appeared in traffic logs, rather than the validity period)
of each root did not exceed 1 day.

Finding 4.7: By further exploring trust relationships between
hidden CA groups and affected clients, we identified fake CA
groups that may come from the same malware family, and un-
known groups potentially being associated with fake CAs.

The trust relationship between hidden CA groups could provide
insights into “what actually happened to affected clients”. To ex-
plore whether the same set of hidden CA groups are trusted by the
2The browser logs the timestamp when a volunteer joins the data collection program
as client ID (see Section 3.4). We roughly correspond a client ID to one volunteer user.



same set of clients, we clustered clients that trusted hidden CAs
from at least three identical groups at the same time. 127 such sets
were found in this way along with several interesting findings. For
example, three fake CA groups hijacked traffic of the same set of
309 clients in different orders, suggesting that they may belong
to the same family and successively infected this set of clients.
We also found one government-owned CA, one digital authentica-
tion, and the CA from one VPN simultaneously installed on 195
clients, with the associated traffic flowing mainly to the intranet
or government-related hosts. These clients are likely used within
government-related agencies that install the hidden CAs for work-
ing purposes. Besides, three groups marked as “unknown” were
found installed on the same set of clients with two or three fake
authentication groups, implying possible relationships between
their upstream operators.

5 IMPLEMENTATION FLAWS
As trust anchors of the Web PKI model, root certificates are heavily
protected and should follow strict implementation requirements. In
this section, we provide the analysis of the implementation flaws
of hidden root certificates.

5.1 Certificate Misuse
Finding 5.1: Over 97% of chains in hidden CA ecosystem are
signed directly by root certificates instead of intermediate ones.

Direct signing with root certificates. For security considera-
tions, root certificates should be heavily protected and stored of-
fline [9, 29], and leaf certificates are usually signed by intermediate
certificates. Previous studies3 report that the typical length of valid
certificate chains signed by trusted root CAs is 2 to 3 (excluding the
root certificate) [54]. By contrast, for hidden root CAs, we find that
most chains (97.55%) are signed directly by root certificates with-
out intermediate ones. For local software (e.g., VPN) that needs to
sign certificates in real-time, this option is reasonable for flexibility.
However, we also find that 41.4% of hidden root CAs owned by gov-
ernment agencies and enterprises exhibit direct signing behaviors.
The direct signing behavior of hidden root certificates increases
their risk of being compromised.

Finding 5.2: Public key sharing between root certificates is
prevalent in the hidden CA ecosystem, with 144 groups suffering
from this threat.

Public key sharing. Among the 5,005 certificate groups, 643 in-
clude over one root certificate and we find public key sharing is
common. Figure 8 shows the count of public keys and certificates
in each group. Surprisingly, 144 groups (22.4%) use one key to issue
all hidden root certificates, and 36 of them hold over 10 certificates.
For a CA, sharing public keys among its root certificates increases
the risk of being compromised [21], particularly when the root
certificates are directly used to sign leaf certificates (Finding 5.1).
While the certificate groups typically belong to fake root CAs, two
kinds of security software are also found to use the same public
key for over 7 thousand certificates that they hold.

3We do not perform a comparison with trusted certificates in our dataset, because
only invalid ones are collected and the results can be biased.

Figure 8: Count of hidden root certificates and public keys
in each group.

Finding 5.3: Wildcard is overly used (over 75%) in the issuance
of hidden CAs, which is not recommended for security consider-
ations.

Abuse and misuse of wildcard. As shown in Table 1 and dis-
cussed in Section 4.4, hidden roots are found to have issued cer-
tificates for over 1.54 million FQDNs (both in subjects and SANs)
under 792K Second-Level Domains (SLD) in our dataset. Among
them, we find a prevalent usage of wildcards (e.g., *.example.com):
over 75% of leaf certificates signed by hidden root CAs use wildcard
domains. Although allowed, wildcard is actually discouraged due
to the frequent incorrect implementations [24, 50]. As an “inferior
case” of certificate practice, a measurement study on HTTPS adop-
tions of government websites [59] showed their usage of wildcard
certificates was about 39.21%, while still lower than that of hidden
CA deployments. In addition, wildcard violations are identified in
59 leaf certificates, such as appearing in the non-left-most label
(e.g., violation.*) or multiple labels (e.g., *.*.violation) of a
domain.
Long validity period. Figure 9 plots the creation dates and ex-
piration dates of hidden root certificates. We first find dozens of
outliers that have unreasonable dates (e.g., 1 root certificate created
in the year 1899 and 3 root certificates expiring in year 9999) and
remove them from further validity related analysis.

Finding 5.4: Over 79% of hidden root certificates are valid for
over 60 years, significantly longer than best practices. Security
risks may last long for clients trusting them.

Zooming into root certificates created during year the 1980 and
2020, we find that most of them have a valid period significantly
longer than best practices: over 935 thousand (79%) are valid for
over 60 years, 317 of which are even valid for over 100 years. To
compare, all root certificates in public programs are valid for less
than 40 years, with a median value of 20 years. Meanwhile, recent
practices of operating systems and root CAs [34, 55] suggest that
root certificates adopt a validity period between 6 months to 16
years based on the strength of their public keys.

What’s worse, because hidden root CAs lack certificate revoca-
tion and incident handling, security risks can last for a long time
for clients that already import them into local root stores. To check
this point, we also manually collected a list of 116 root certificates



that have been publicly announced as being revoked by operating
systems [3], browsers [63] or technical reports [1]. 23 roots on
this list were observed active in the hidden CA ecosystem in our
data, trusted by over 34,018 clients and affecting 263,500 HTTPS
connections in 5 months. One of them, CFCA, which is a digital
authentication CA, even has a long validity period ending at the
year 4749.

Figure 9: Creation dates and expiration dates of hidden root
certificates.

5.2 Non-compliant Certificate Content
In addition to issuance behavior and usage flaws, we further identify
content in-compliance of hidden CA ecosystem at scale by Zlint [44].
Zlint is a certificate linter that checks whether a certificate meets
implementation requirements specified by the X.509 standard, CAs
and browsers. We run it on all 1.17 million hidden root certificates
and 59.8 million leaf certificates signed by them. The tool inspects
certificates with 266 lints of different security levels, i.e., ERROR
(implementation violates a MUST in standards), WARNING (implemen-
tation violates a SHOULD in standards) and NOTICE (other low-risk
information). We focus on all ERROR messages output by Zlint, as
they are violations of basic implementation requirements.

Finding 5.5: The implementation of most hidden root certificates
is problematic, with over 87% of them violating at least one basic
requirement of X.509 standards.

Problematic content of root certificates. Of 1.17 million hidden
root certificates, Zlint reports 1,201,189 ERROR messages of 73 lints.
Over 87.3% of all hidden root certificates have been reported at least
one ERRORmessage, as shown in Table 5. Unfortunately, considering
average performance, CAs from fake authentications exhibited the
best with 0.84 errors per root, while the weakest were self-built
CAs with an average error number of 3.25. Specifically, most root
certificates miss critical extensions such as key identifiers, which
can cause certificate verification errors. Invalid and vulnerable field
values (e.g., negative serial numbers and weak public keys) are also
prevalent. In addition, 10.9% hidden root certificates only receive
WARNING and NOTICE messages. While they do not violate basic
requirements, the implementation is also considered flawed and
should be fixed [19, 33, 44].

Table 5: Zlint ERROR messages of hidden root certificates

Error Type # Lints # Cert Errors Example

Missing extensions 15 954,453 (79.46%) Missing key identifier
Invalid values 49 121,745 (10.14%) Negative serial number
Missing fields 3 89,763 (7.47%) Missing CA organization
Vulnerable values 6 35,228 (2.93%) RSA key < 2048 bits

Figure 10: Zlint ERROR message ratio of leaf certificates asso-
ciated with the top 100 certificate groups.

Finding 5.6: The implementation of leaf certificates signed by
hidden CAs is even more worrisome. 85 of the top 100 root cer-
tificate groups sign every leaf certificate with implementation
errors.

Problematic content of leaf certificates. The implementation
of leaf certificates signed by hidden CAs is even worse. On aver-
age, Zlint reports 8.14 ERROR and 1.93 WARNING messages for each
leaf certificate. Compared to the root certificates, the ERROR mes-
sages in leaf certs come from 114 lints, with an increased ratio
of vulnerable fields (22.8%). After inspection, we confirm that it’s
caused by a prevalent usage of weak 1024-bit RSA keys (which
would be detailed discussed in Sec 6). However, similar to the case
of root certificates, we found leaf certs from fake authentications
contribute the least to the violations. The top 10 groups with the
highest average number of errors in their issued leaf certificates
include 2 VPNs, 1 Proxy, 4 Enterprise CAs, 2 Government CAs and
1 group of unknown category. The correlation between the scale of
leaf certificates signed by each hidden CA group and their errors
is shown in Figure 10. The size of each bubble shows the scale of
leaf certificates and the color shows the certificate error rate. 85 of
the top 100 groups sign every leaf certificate with implementation
errors (i.e., the error rate is 100%). Only 3 certificate groups with a
smaller scale of leaf certificates have an error rate of less than 50%.
The results are significantly more worrisome than leaf certificates
signed by public trusted CAs, where only 0.02% received ERROR
messages in 2018 [44].

6 VALIDATION ERRORS FROMWEB CLIENTS
We have spotted several implementation flaws of hidden CAs, such
as extra-long validity periods and violating wildcards in Sec 5.
However, as for real-world web visits, the validity rules checked
by clients are not exactly the same as the above discussed security
guidelines documented in standards and could be analyzed based



on scaled certificate data alone. For example, it could be impossible
for the client to check whether the root certificate issued the chain
shares the public key with other roots, but instead, it could reject
the chain based on local and contextual information such as local
trust lists (AUTHORITY_INVALID), timestamps (DATE_INVALID) and
the host it accesses (COMMON_NAME_INVALID).

This section benefits from the STATUS_CODE of each record in
our collected data, which reports the actual errors detected by
the web client at the time it received the chain. It could provide
a complement to the validity of hidden CA issued chains from
the perspective of web clients in the wild. Table 9 of Appendix A
lists all the reported error types. Besides, recall that 360 Secure
Browser also collects invalid certificate chains signed by public
trusted CAs (see Table 1), which provides us the opportunity to
perform comparisons with public CAs.

Figure 11: Daily ratio of invalid certificate chains

Finding 6.1: On average, clients would report more errors when
encountering chains issued by hidden CAs than public CAs in
the wild, with an overall error rate of 3.59%.

Overall error rate. The daily ratio of invalid certificate chains
(over the number of all certificate chains) is shown in Figure 11. As
expected, certificate chains signed by hidden CAs show a higher
invalid ratio: an average of 3.59% are invalid, while the number for
public trusted roots is 0.55%. It is also worth noting that, several
prevalent implementation flaws analyzed in Sec 5 are currently not
in the checking list of clients, probably for better usability. While,
it also leaves the users in some blinded state, i.e., hard to be aware
of the presence and potential risks of hidden CAs in their daily web
visiting traffic. Besides, unfortunately, we found the potentially least
reputable member of the hidden CA ecosystem, the chains issued by
fake roots had the lowest invalid rate, while self-built CAs signing
public websites presented the highest error rate on the contrary (see
Table 2). Table 6 also shows the top 5 verification errors occurring
in the hidden CA ecosystem and their main contributors. The most
serious error reported by clients is WEAK_SIGNATURE_ALGORITHM,
i.e., the signature algorithm is weaker than the requirements of
the verification API, suggesting that hidden CAs, especially the
self-built roots, may have weaker cryptographic practices.

Finding 6.2: Cryptographic flaws are the most serious errors of
hidden CAs validated by clients. Weak algorithms like SHA-1 are
still used and weak keys like 1024-bit RSA are found in over 97%
of their issued leaf certificates.

Table 6: Top 5 verification errors occurring in certificate
chains signed by hidden root CAs.

Error Type % traffic Main Source

WEAK_SIGNATURE_ALGORITHM 2.4645% Self-built (81.38%)
COMMON_NAME_INVALID 2.2392% Self-built (74.81%)

AUTHORITY_INVALID 1.5260% Self-built (55.90%)
DATE_INVALID 0.4832% Fake Root (38.33%)

INVALID 0.1715% Unknown (97.80%)

Table 7: Signature algorithms of hidden certificates (weak
algorithms are marked red).

Signature Algorithm Root Certs Leaf Certs

SHA-256 with RSA 1,041,118 (88.59%) 59,553,038 (99.56%)
SHA-256 with ECDSA 128,857 (10.97%) 190,241 (0.32%)
SHA-512 with RSA 102 (0.01%) 640 (0.00%)
SHA-1 with RSA 5,005 (0.43%) 69,419 (0.12%)
Other 63 (0.01%) 4247 (0.01%)

Table 8: Public key strength of hidden certificates (weak
keys are marked red).

Key Type Root Certs Leaf Certs

RSA (2048-bit) 1,038,534 (88.37%) 1,451,858 (2.43%)
ECDSA (256-bit) 128,857 (10.97%) 190,114 (0.32%)
RSA (4096-bit) 781 (0.07%) 661 (0.00%)
RSA (1024-bit) 6,905 (0.59%) 58,165,008 (97.24%)
RSA (256-bit) - 5,905 (0.01%)
Other 68 (0.01%) 4039 (0.01%)

Cryptographic practice issues. We then take a closer look at
the cryptography flaws of hidden CAs. Table 7 and 8 show the
distribution of their signature algorithms and public key strengths.
From recommendations by NIST [8], algorithms and public keys
that are considered weak and dangerous are marked in red. As
shown in Table 7, a small number of hidden CAs (including 1,679
roots of Proxy/VPN) still use vulnerable algorithms as SHA-1, which
should be banned since 2016 [33]. As for public keys, 0.59% hidden
root certificates (20.73% of self-built CAs) use weak keys, while up to
97% leaf certificates signed by them use weak public keys. Comparing
to leaf certificates signed by public trusted CAs, a study in 2013 [26]
find that nearly 90% already had a key strength of 2048-bit RSA or
above.

7 DISCUSSION
Comparison with HTTPS interception studies. Although pre-
vious studies of HTTPS interception seem to be the most relevant
to this work, the scope of research is different: traffic from hidden
roots is not always covered by interception (e.g., visits to websites is-
sued certificates from government self-built roots), and intercepted
traffic is also not covered by hidden roots only (e.g., mis-issuance
from public trusted CAs). Thus we consider several results of previ-
ous works, such as the HTTPS interception rate [23, 39, 58, 64], are
not directly comparable with our results. Besides, since a consider-
able proportion of our data also comes from interceptions, some
of our findings, e.g., the hijacking behavior of fake CAs and the
implementation flaws in local software, have also been discussed
previously [15, 21, 22, 28, 56]. However, we are the first to report



the systematic evaluation of their impact on real-world clients. Be-
sides, the insights we provide into the nature of the hidden root
ecosystem are not covered by previous works, e.g., its dynamic
update properties.
Distribution channels of hidden root CAs. In this work, we
study over 1.19 million hidden root certificates. While they can be
imported or pinned to local operating systems, we cannot learn
exactly how they got trusted by web clients (i.e., their distribu-
tion channels) solely from certificate data analysis. For websites
that actively use self-built root CAs, instructions on how to im-
port non-public certificates into local root stores are often shown
to web users (e.g., www.rootca.gov.cn and gat.hunan.gov.cn).
Typically, users may follow the instructions in order to dismiss
certificate errors and visit the websites. For root certificates of fake
CAs, we find several of them hitting threat intelligence or associated
with malware according to sandbox logs. They may be maliciously
installed by client-side malware or spamming tools in order to
inspect secure connections. For others, they can be imported by
local software (e.g., VPNs and proxies). While we are still unsure of
the exact reason, considering the widespread impact and various
implementation flaws of hidden CAs as discussed in this work, web
users and security software are recommended to check carefully,
or even prompt alert messages when installing software with such
behaviors.
Recommendations. This paper reveals the large-scale and wide-
spread impact of hidden root certificates. Meanwhile, the inherent
“non-transparency” of this ecosystem makes it hard to be well regu-
lated. It also leaves serious security risks as reported in this work.
We acknowledge that it could be impractical to rigorously check
and block all roots outside of the public trust list, while at least
several parties could cooperate to mitigate the potential security
risks. Below lists our recommendations.
● Operating system: To regulate root store modification. It is
allowed to install hidden roots into the local trust store, while the
modification process could be regulated by the operating system
in a stricter way through the following steps: 1) Compliance check
before import. Unlike public CAs that are effectively reviewed by
CTs, hidden roots can be generated and installed locally with non-
audit content. Therefore, the OS should take the responsibility of
the regulator, i.e., check the compliance of hidden roots (at least
their certificate content, as Sec 5 and Sec 6 in this work) before
importing them and reject the flawed ones. 2) Monitor and log
trust store modifications. Any insertion into the local trust store
should be monitored and logged in detail, including which appli-
cation/process requests the insertion. 3) Provide explicit risk noti-
fication to users. Importing hidden roots into the local trust store
should be considered as a high-risk operation, thus the OS should
prompt informative security alerts (instead of simply notifying
“local configuration is being modified” ) to users.
● Browser: To enhance UI design and notification. Currently,
except for Mozilla [57] which maintains its own root store, the
vast majority of browsers rely on the trust list provided by the
platform they are running on. That is, certificate chains issued
by hidden roots imported in local trust lists would be indicated as
authenticated just as public trusted ones, e.g., with a (green) padlock
shown in the address bar, and leaving the users even unaware of
the presence of hidden roots. However, as found in this work, the

security properties of such links are questionable (e.g., malicious
interceptions and vulnerable chains from flawed hidden roots).
Therefore, we recommend browsers adjust the alerting mechanism
by: 1) Maintaining a public trusted list itself (or transition to its
own root store, as Chrome [16] plans to do) to distinguish hidden
roots. 2) Differentiating safety icons for such links, e.g., by turning
the padlock orange or tagging it.
●Application: To standardize certificate implementation.We
find non-standard certificate implementations are very common,
especially with ambiguous subject information, which raises great
difficulties in identifying the ownership and usage of hidden roots.
In this work, despite the best efforts, 15 out of the top 100 hidden
root groups are still indistinguishable and temporarily marked as
unknown. Therefore, we suggest that, at least for local applications
that intercept traffic for non-malicious purposes, as well as the in-
ternal roots of governments and enterprises, provide more precise
subject information and normalize certificate content for better
identity verification and security regulations.

8 CONCLUSION
Root CAs serve as trust anchors in the Web PKI security. However,
client-side local root CA stores could be manipulated by vendors,
local software or even malware. Suffering from hidden root CAs
that are not trusted from public root programs into local stores,
web clients are exposed to a series of security risks, such as HTTPS
downgrade and TLS interception.

In this study, we provide a national client-side view of large-scale
hidden root certificates by cooperating with a leading browser ven-
dor in China. We performed a comprehensive measurement study,
and identified 1.17M hidden root certificates, affecting 5.07 million
web clients and 222 million (0.54%) HTTPS connections. Follow-
ing, we also classified their usages and analyzed their distribution
sources, including self-built CAs, local software and fake authenti-
cations CAs. Numerous implementation and operation flaws have
been demonstrated, for example, public key sharing, abuse of wild-
cards and long validity period are prevalent.

In general, our study suggests that the community should im-
mediately review the security of the local root store, and seek a
security best practice to notify client users in the event of root store
modification.
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APPENDIX
A CERTIFICATE VERIFICATION CODES
To verify a certificate chain, 360 Secure Browser calls APIs of un-
derlying operating systems (e.g., cryptoAPI) which return all ver-
ification errors that occur in a double-word value. The errors are

then recorded as STATUS_CODE in the collected certificate records.
Table 9 shows all certificate verification errors in STATUS_CODE that
are captured in our dataset.

Table 9: Certificate verification errors reported by
STATUS_CODE (captured in our dataset).

# Verification Error Description

1 COMMON_NAME_INVALID
commonName of leaf certificate does not
match the given hostname.

2 DATE_INVALID Certificate is out of its validity period.

3 AUTHORITY_INVALID
Root certificate is not trusted by local
operating system.

4 ERR_CERT_CONTAINS_ERRORS Certificate is malformed.

5 UNABLE_TO_CHECK_REVOCATION
Cannot check the revocation status of
certificate.

6 REVOKED Certificate is revoked.
7 INVALID Invalidation due to other reasons.

8 WEAK_SIGNATURE_ALGORITHM
Certificate uses a signature algorithm
weaker than the API’s requirements.

9 WEAK_KEY
Certificate uses a key weaker than the
API’s requirements.

10 PINNED_KEY_MISSING
Pinned public key is not in the
certificate chain.

11 NAME_CONSTRAINT_VIOLATION
CA signs certificate to subjects out of
its name constraints.

12 VALIDITY_TOO_LONG
Certificate’s validity period is longer
than the API’s requirements.

13 CT_COMPLIANCE_FAILED
Certificate has compliance failures
with CT policies.

14 CERTIFICATE_TRANSPARENCY_REQUIRED Certificate is not properly logged in CT.

15 SYMANTEC_LEGACY
Root certificate belongs to distrusted
Legacy Symantec PKI.

https://support.globalsign.com/ca-certificates/root-certificates/globalsign-root-certificates
https://support.globalsign.com/ca-certificates/root-certificates/globalsign-root-certificates
https://bugzilla.mozilla.org/buglist.cgi?component=CA%20Certificate%20Root%20Program&product=NSS&bug_status=__open__
https://bugzilla.mozilla.org/buglist.cgi?component=CA%20Certificate%20Root%20Program&product=NSS&bug_status=__open__
https://www.websecurity.digicert.com/content/dam/websitesecurity/digitalassets/desktop/pdfs/repository/root-certificates.pdf
https://www.websecurity.digicert.com/content/dam/websitesecurity/digitalassets/desktop/pdfs/repository/root-certificates.pdf
https://www.websecurity.digicert.com/content/dam/websitesecurity/digitalassets/desktop/pdfs/repository/root-certificates.pdf
https://bugzilla.mozilla.org/show_bug.cgi?id=724929
https://bugzilla.mozilla.org/show_bug.cgi?id=523652
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